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INTRODUCTION 
 
 When models are applied in decision-making processes an evaluation of the uncertainty 
of the model predictions is of the utmost importance.  The decision maker needs to know 
whether or not the level of uncertainty in modeled results are acceptable in the context of the 
decisions to be made.  Without some knowledge of the uncertainty, the model essentially lacks 
useful predictive power.  In practice it is difficult, if not impossible, to gain a complete 
understanding of all of the sources of model uncertainty and take them into account.  However, it 
is incumbent on modelers to assess and report model uncertainty to the extent that it is feasible. 
 
 At the time the 1996 ozone CD was published, available information indicated that only 
40 percent of the variability in personal exposures was explained by exposure models (CD, 
Appendix AX3, page 196).  Since that time there have been considerable improvements in 
population exposure models and data for these models.  However, a comprehensive evaluation of 
population exposure models for ambient air pollutants has never been performed, and significant 
uncertainties in the predictions of these models remain. 
 
 The importance of specific limitations of exposure models is application- and pollutant-
specific. For example, the distribution of air exchange rates is one of the more important model 
input data for PM exposure modeling.  For some air toxics, uncertainties in the emissions and air 
concentrations of the pollutant will be the overriding limitation.  For pollutants where time spent 
outdoors is an important parameter (for example, ozone), activity diary construction may be a 
significant source of uncertainty. 
 
 This analysis of model uncertainty is performed as part of the exposure analysis 
conducted in support of the ozone NAAQS review, described in Chapter 4 of the Ozone Staff 
Paper (EPA, 2006a) and the Exposure Analysis Technical Support Document (EPA, 2006b).  
The exposure model, APEX, is documented in a user’s guide and technical document (EPA, 
2006c,d).  We will refer to these four documents in the remainder of this report as the Staff 
Paper, the Exposure Analysis TSD, the APEX User’s Guide, and the APEX TSD. 
 
 This report presents interim results and identifies the work still to be completed.  A final 
version will be available with the release of the final ozone Staff Paper in October, 2006. 
 
 In the remainder of this section, we cover some of the basic concepts of model variability 
and uncertainty.  The next section gives an overview of our approach for quantitatively 
characterizing the uncertainty of the exposure modeling performed as part of the ozone NAAQS 
review, followed by sections on estimation of the uncertainty of the inputs to the exposure model 
APEX and treatment of the uncertainty of the formulation of the APEX model.  The results of 
the uncertainty analysis will be presented in the final section. 
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Concepts 
 

Uncertainties arise from errors in the values of data and parameters input to the model 
and the necessarily simplified representation by the model of complex physical and human 
behavioral processes.  The model inputs are assumed to be representative of the area being 
modeled, and many of them are (e.g., population demographics, air quality and meteorological 
data).  However, some of the inputs are derived from data collected at locations and/or time 
periods that differ from those being modeled, and these can contribute to the uncertainty of the 
model results.  It is difficult to judge the significance of these different sources of uncertainty 
without conducting a thorough assessment of the uncertainties and also of the variability of the 
model inputs and results.  The distinctions between uncertainty and variability and between 
sensitivity and uncertainty analyses are fundamental to this discussion.  These are defined as 
follows. 
 
Uncertainty refers to the lack of knowledge of the actual values of physical variables (parameter 
uncertainty) and of physical systems (model uncertainty).  For example, parameter uncertainty 
can result when non-representative sampling (to measure the distribution of parameter values) 
gives sampling errors.  Model uncertainty results from simplification of complex physical 
systems.  Uncertainty can be reduced through improved measurements and improved model 
formulation. 
 
Variability represents the diversity or heterogeneity in a population or property, and is an 
inherent property of a physical property or population characteristic.  This is sometimes referred 
to as natural variability.  Examples are the variation in the heights of people and the variation of 
temperature over time.  Variability cannot be reduced by using more measurements or 
measurements with increased precision (taking more precise measurements of people’s heights 
does not reduce the natural variation in heights).  Inter-individual (between-individual) 
variability refers to the differences in a property between individuals in a population.  The 
variation of a property for one individual over time is intra-individual (within-individual) 
variability. 
 
Sensitivity Analysis assesses the effect of changes in individual model input parameters on 
model predictions.  This is often done by varying one parameter at a time and recording the 
associated changes in model response.  One primary objective of a sensitivity analysis is to rank 
the input parameters on the basis of their influence on, or contribution to, the variability in the 
model output. 
 
Uncertainty Analysis involves the propagation of uncertainties and natural variability in a 
model’s inputs to calculate the uncertainty and variability in the model outputs.  It can also 
involve an analysis of the uncertainties resulting from model formulation.  The contributions of 
the uncertainty and variability of specific model inputs to the uncertainty and variability of the 
model predictions can in some cases be explicitly quantified. 
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Data Uncertainty and Model Uncertainty 
 
 In general, limitations and uncertainties result from variability not modeled or modeled 
incorrectly, erroneous or uncertain inputs, errors in coding, simplifications of physical, chemical, 
and biological processes to form the conceptual model, and flaws in the conceptual model.  
Sources of uncertainty in exposure modeling can be classified into two primary areas: errors in 
the model input data and parameters, and errors in the formulation of the model itself (structural 
uncertainty). 
 
Parameter or Input Data Uncertainty.  When parameters or input data are estimated from 
measurements or samples from within a larger population, uncertainties can arise from: 

• small sample sizes 
• imprecise measurements (systematic and random errors) 
• non-representative samples, extrapolation errors 
• temporal period and/or spatial extent too limited to detect trends 
• flawed study design (systematic errors in the data collection process) 
• flawed statistical estimation method 
• the use of surrogate measures 

 
Model Formulation or Structural Uncertainty.  Model uncertainty can result from: 

• simplifying assumptions 
• incorrect assumptions 
• incomplete knowledge of the physico-chemical processes 
• not accounting for important variables 
• temporal and spatial aggregation errors 
• mis-specification of the problem 
• applying a model in a situation for which it was not designed 

 
 A simple example which illustrates the difference between model input uncertainty and 
structural uncertainty is modeling the distribution of heights in a population by a normal 
distribution, parameterized by the mean and variance.  Estimates of the mean and variance are 
the “model input data.”  The uncertainty which results from the difference between the shape of 
the true distribution and the normal distribution leads to structural uncertainty.  The parameters 
of the distribution are estimated by measuring a sample of the population, and thus are subject to 
sampling errors, which result in the model inputs uncertainty.  Increasing the sample size will 
reduce these errors and the associated uncertainty of the modeled distribution.  However, if the 
form of the distribution is incorrect, increasing the sample size will help only up to a point, and 
then model uncertainty will dominate.  The only way to reduce the uncertainty further would be 
to improve the model by finding a distribution whose shape more accurately reflects the true 
distribution of heights. 
 
 Note that an input value can be very uncertain and yet have little contribution to the 
uncertainty of the model results.  This depends on the degree of leverage or influence the 
particular model input has.  Thus the most uncertain inputs do not necessarily contribute the 
most to the uncertainty of the model results.  In some cases, the amount of influence that a 
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parameter has can depend on values of other parameters.  For example, the proportion of houses 
with air conditioning may be an influential model input when temperatures are high, and not 
when temperatures are low. 
 
 The primary difficulty in performing an uncertainty analysis is the quantitative 
characterization of the uncertainties of the model inputs and model formulation.  We often have 
information about the variability of model inputs, and sometimes the variability and uncertainty 
combined, but it is usually difficult to estimate the uncertainty separately from the variability.  
We seldom know the quantitative uncertainty resulting from model formulation, except in cases 
where a model evaluation has been performed. 
 

The Uncertainty of Uncertainty Analysis 
 
 If all of the important sources of uncertainty are not taken into account, an analysis of 
uncertainty will give a misleading picture.  Unfortunately, the major sources of uncertainty tend 
to be the most difficult to characterize, since if we have data for good quantitative 
characterization of uncertainty, these data can often then be used to reduce the uncertainty.  
Thus, estimates of uncertainty are themselves uncertain.  Model evaluation, where model 
predictions are compared with measured values, is useful in this context. 
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APPROACH FOR ASSESSMENT OF EXPOSURE MODELING UNCERTAINTY 
 
 The goal of this uncertainty analysis is to quantify the uncertainty in the APEX model 
output that results from uncertainty in the model inputs and uncertainty due to the model itself. 
 
 There are two general methods we are using to assess the uncertainty due to uncertain 
model inputs.  The primary method involves first quantifying the uncertainties of each of the 
model inputs, and then propagating those uncertainties through the model to estimate the 
resulting uncertainty of the model results.  We do this using the Monte Carlo method, which has 
the advantage of being very flexible (Morgan and Henrion, 1990; Vose, 1996).  The second 
method involves sensitivity analyses.  Certain model inputs are very complex and difficult to 
treat with a Monte Carlo approach, and we conduct sensitivity analyses to quantify their effect 
on uncertainty. 
 
 APEX is a Monte Carlo simulation model which explicitly incorporates the inherent 
variability of the modeled population and physical processes leading to exposures.  Most of the 
inputs to APEX are distributions.  For example, instead of using a single decay rate for the decay 
of ozone indoors, a distribution of hourly decay rates is input to APEX, specified by its form 
(lognormal) and parameters (a geometric mean (GM) of 2.5 and geometric standard deviation 
(GSD) of 1.5), as shown in Figure 3.  The development of the distributions representing 
variability which are input to APEX is described in the Exposure Analysis TSD (EPA, 2006a). 
 
 The Monte Carlo approach entails performing many model runs with model inputs 
randomly sampled from distributions reflecting the uncertainty of the model inputs.  For ozone 
decay rates, we are assuming that the form of the distribution is approximately correct, but 
realize that the GM and GSD are not known precisely.  We estimate that the errors of the GM are 
normally distributed with mean 0 and standard deviation 0.18 (Figure 1), and the errors of the 
GSD are normal with mean 0 and standard deviation 0.05 (Figure 2).  Then we run APEX 
numerous times, and for each run we randomly select values from these error distributions, add 
them to the GM (2.5) and GSD (1.5) of the decay rates, and use these for model inputs.  Figure 4 
illustrates six decay rate distributions that result from adding these uncertainty terms (randomly 
selected from the distributions depicted in Figure 1 and Figure 2) to the GM and GSD of the base 
distribution. 
 
 Our approach to the assessment of the uncertainty resulting from model formulation and 
structure primarily involves a careful review of the scientific basis of the algorithms that make 
up APEX.  We have also conducted a limited evaluation of APEX by comparing its predictions 
to 6-day average personal exposure measurements of ozone (see the Exposure Analysis TSD).  A 
diagnostic evaluation with personal exposure monitors (PEMs), indoor, and outdoor 
measurements of ozone with shorter averaging times (1 hour or less) would be very informative, 
if the data were available. 
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Figure 1.  The distribution of the uncertainty of the GM (normal, mean=0, stdev=0.18) 

 
 

 
Figure 2.  The distribution of the uncertainty of the GSD (normal, mean=0, stdev=0.05) 
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Figure 3.  The base decay rates variability distribution (lognormal, GM=2.5, GSD=1.5) 

 
Figure 4.  Six realizations of the combined variability and uncertainty distribution 
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 The primary obstacle to performing an acceptable uncertainty analysis for this type of 
modeling is the quantitative characterization of the uncertainties of the model inputs.  We often 
have information about the variability of model inputs, and sometimes the variability and 
uncertainty combined, but it is usually difficult to estimate the uncertainty separately from the 
variability.  Developing appropriate distributions representing variability and uncertainty in 
various model inputs (e.g., air exchange rates, ozone decay rates, physiological parameters) is a 
key part of this modeling effort. 
 
A Note About the Lognormal Distribution 
 
 Most of the inputs to APEX which have population variability are best fit with a 
lognormal distribution, and in some cases only the parameters of lognormal fits to data are 
reported in the literature.  Typically there are not much data or information available for 
estimating the uncertainty of the distributions representing variability which are input to APEX, 
and a decision must be made about the distributional form of the uncertainty.  Given an estimate 
of the uncertainty of an unbiased estimate of the GM, the question arises whether the uncertainty 
interval for the GM should be symmetric about the GM (e.g., [GM–Δ, GM+Δ]) or symmetric in 
the data space (symmetric about the GM multiplicatively, e.g., [GM/Δ, GM·Δ]), and whether or 
not the GSD should be concurrently varied.  Changing the GM (or the GSD) changes both the 
mean and the standard deviation of a distribution, so care must be exercised when varying one or 
the other of these to ensure that the GM,GSD pair is valid.  Therefore, if the estimate of the mean 
of a lognormal distribution is unbiased, then the GM and GSD must be varied concurrently in the 
Monte Carlo simulations in such a way that the average of the means of the Monte Carlo 
distributions is approximately equal to the original estimate of the mean. 
 

QUANTIFYING THE UNCERTAINTY OF APEX MODEL INPUTS 
 
 In this section we describe how the distributions of uncertainty were developed for this 
assessment of uncertainty of our application of APEX to model population exposures to ozone 
pollution in 12 U.S cities. 
 

Ambient Air Quality Concentrations 
 

Hourly ambient concentrations are input to APEX, accounting for temporal variability.  If 
concentrations from only one monitor are used, then spatial variability is not accounted for and 
cannot be properly modeled.  If multiple monitors are used, then spatial variability is accounted 
for, but some uncertainty remains for concentrations at locations distant from monitors.  The 
uncertainties associated with these concentrations in relation to spatial representativeness can be 
significant.  For this modeling analysis, there is fairly good spatial coverage of the areas 
modeled. Table 1 lists the numbers of monitoring sites in the study areas for the two years 
modeled.  Using Boston as an example, the placement of monitors for the Boston greater 
metropolitan area is shown in Figure 5 (the monitoring sites are indicated by squares and the 
combined statistical 
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Figure 5.  Boston CSA with ozone monitoring sites 
 
 
 
area (CSA) by the heavy black lines).  However, spatial variations in ozone concentrations can 
be considerable, resulting in uncertainty if these are not accounted for by the model (CD, Section 
3.3). 
 
 If a single ozone season is modeled, another source of uncertainty results from the year-
to-year variability of ozone concentrations, meteorology and NOx and VOC emissions.  We have 
modeled the 2002 and 2004 ozone seasons, which have different ozone concentrations due to a 
combination of different weather patterns and emissions of ozone precursors.  In this way we 
account for the sensitivity of the exposure modeling results to year-to-year variability of air 
quality and meteorology. 
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Table 1.  The number of ozone monitors in each of the study areas 

Number of monitorsStudy Area (CSA) 2002 2004 
Atlanta-Sandy Springs-Gainesville, GA-AL 13 12 

Boston-Worcester-Manchester, MA-NH 17 15 

Chicago-Naperville-Michigan City, IL-IN-WI 32 27 

Cleveland-Akron-Elyria, OH 11 11 

Detroit-Warren-Flint, MI 10 10 

Houston-Baytown-Huntsville, TX 21 21 

Los Angeles-Long Beach-Riverside, CA 45 44 

New York-Newark-Bridgeport, NY-NJ-CT-PA 30 29 

Philadelphia-Camden-Vineland, PA-NJ-DE-MD 18 16 

Sacramento--Arden-Arcade--Truckee, CA-NV 21 22 

St. Louis-St. Charles-Farmington, MO-IL 18 17 

Washington-Baltimore-N. Virginia, DC-MD-VA-WV 28 26 
 
 
 In addition to modeling exposures for 2002 and 2004, we are modeling exposures for 
scenarios of attainment of the current ozone standard and a number of potential alternative 
standards.  For areas which do not meet these standards for these modeled years, attainment of 
these hypothetical scenarios would occur in the future.  Modeling exposures for future years 
under different emission control strategies has, in addition to the uncertainties involved with 
modeling historical scenarios, the uncertainties of the complex process of projecting to future 
years air quality, population demographics, activity patterns, and other parameters which change 
over time.  We employ a quadratic rollback technique to calculate ozone concentrations for these 
scenarios.  This technique and the rationale for using it are described in the draft Staff Paper. 
 

The primary uncertainties in the air quality data input to the model, discussed in the 
remainder of this section, result from: 

• Instrument measurement error 
• Estimation of missing data (temporal interpolation) 
• Estimation of neighborhood-scale concentrations at locations which are not close to 

monitoring sites (spatial interpolation) 
• Estimation of micro-scale concentrations (e.g., near-roadway) 
• Adjustment of concentrations to reflect alternative standards (rollback) 
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Uncertainty Due To Measurement Error 
 
 The Federal reference method (FRM) for ozone is based on chemiluminescence.  
However, chemiluminescence has not been widely used in instrumentation since the mid-1980s.  
Most instruments in use today employ ultra-violet (UV) absorption, a Federal equivalent method 
(FEM) (CD, Section 2.6).  The equivalency test requires instruments to be within 5 ppb of 
known ozone concentrations (1-hour average) (40 CFR Ch. 1, section 53.2).  Interference with 
other pollutants and humidity can lead to errors in measurements.  This does not seem to be well 
quantified (CD, pages 2-25 to 2-26), but can range from a few ppb to up to 20-40 ppb in highly 
polluted areas (CD, page 2-23). 
 
 For this uncertainty analysis we will estimate the errors of the hourly average 
measurements from the site-specific single point precision and bias estimates from the 2003 
Criteria Pollutant Quality Indicator Summary Report (Battelle, 2004) and the 2004 Single Point 
Precision and Bias Graphics for Criteria Pollutants (EPA, 2005a,b).  Figure 6, taken from the 
Battelle report, illustrates these errors for some of the Massachusetts monitors.  The “Bias” is the 
95% confidence upper limit on the mean of the absolute values of relative percent differences for 
the monitoring season, and the “CV” is the 90% confidence upper limit of the coefficient of 
variation (CV) of relative percent difference values for the monitoring season.  A positive bias 
means that the monitor readings are too high.  Table 2 lists the 2003 and available 2004 values 
for monitors in the Boston CSA.  Note that the 2003 and 2004 values do not correlate well, 
which indicates that the bias may be random for a given monitor.  We estimate the measurement 
error uncertainty as normally distributed, with mean and CV taken to be the overall average of 
the precision and bias values.  For example, the numbers in Table 2 give an average bias of 
0.22% and an average CV of 4.4%. 
 
Table 2.  2003 and 2004 Single Point Precision and Bias for Boston Monitors 
 2003 2004 

AQS ID Bias (%) CV (%) Bias (%) CV (%) 
250090005-1 -2.71 0.90 +2.66 2.55 
250092006-1 +3.73 3.74 -5.70 5.71 
250094004-1 +3.89 4.96 +2.49 2.28 
250095005-1   +0.72 0.81 
250171102-1 -5.86 0.91 -5.73 6.23 
250213003-1 -2.41 3.21 -2.82 2.89 
250250041-1 -7.35 7.87 -4.01 1.66 
250250042-1 -1.07 0.94 3.54 4.51 
250270015-1 -2.63 3.37 +4.09 2.40 
330012004-1 +5.23 7.32   
330110020-1 +3.4 4.26   
330111010-1 3.05 4.47   
330115001-1 3.83 4.18   
330130007-1 -3.38 3.98   
330150012-1 -2.38 2.93   
330150013-1 +11.28 14.29   
330150015-1 9.28 11.90   
330173002-1 -5.36 6.79   
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Figure 6.  2003 Precision and Accuracy for Massachusetts Monitors 
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 We are treating the measurement errors at a given monitor uncorrelated.  We could 
estimate the autocorrelation of the hourly errors through an analysis of measurements at 
collocated instruments. 
 

Uncertainty in Estimation of Missing Data 
 
 Missing air quality data were estimated by the following procedure.  If there were 
consecutive strings of missing values (data gaps) of less than 6 hours, missing values were 
estimated by linear interpolation between the valid values at the ends of the gap.  Remaining 
missing values at a monitor were estimated by fitting linear regression models for each hour of 
the day, with each of the other monitors, and choosing the model which maximizes R2 for each 
hour of the day, subject to the constraints that R2 be greater than 0.5 and the number of 
regression data values is at least 50.  If there were any remaining missing values at this point, for 
gaps of less than 9 hours, missing values were estimated by linear interpolation between the 
valid values at the ends of the gap.  Any remaining missing values were replaced with the 
regionwide mean for that hour.  The amount of missing data in 2002 across the 12 modeled cities 
is indicated in Table 3 (e.g., 75% of all of the monitors had less than 5% missing data during the 
2002 ozone seasons). 
 
 
Table 3.  Distribution of 2002 ozone season monitor-level missing data for the 12 modeled 
CSAs 
Percentile 10% 25% 50% 75% 90% 
Percent missing 0.5% 1% 2.5% 5% 10% 
 
 
 The uncertainty of this method for filling in missing data was estimated by a jackknife-
type approach where subsets of the data are randomly designated as “missing,” then these 
missing values are filled in using the above procedure, and the filled in values are compared with 
the original values to see how well they are estimated.  Since longer gap lengths generally 
engender more uncertainty, we calculate the frequencies of different gap lengths in the original 
data and set data to missing in such a way that these frequencies are reproduced.  These errors 
turn out to be generally less than 0.004 ppm.  Table 4 shows that replacement of missing data for 
the Boston CSA had little effect on the mean and standard deviation of the hourly ozone 
concentrations at each monitor.  The root mean square error (RMSE) was generally less than 
0.004 ppm, with insignificant bias, and the distribution of errors can be reasonably approximated 
by a normal distribution (Table 7 has the values used in this analysis). 
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Table 4.  Effect of missing data replacement on the distribution of 2002 hourly ozone for 
monitors in the Boston CSA (ppb) 

Monitor 

# of 
hours 

missing 

Mean of 
original 

data 
Mean of 

filled data Difference

St. dev. of 
original 

data
St. dev. of 
filled data Difference

2500900051 290 0.0296 0.0292 0.00042 0.0188 0.0187 0.00009

2500920061 171 0.0369 0.0368 0.00013 0.0197 0.0195 0.00014

2500940041 141 0.0375 0.0374 0.00010 0.0178 0.0178 -0.00001

2501711021 483 0.0360 0.0362 -0.00016 0.0199 0.0199 -0.00004

2502130031 143 0.0427 0.0425 0.00015 0.0204 0.0203 0.00012

2502500411 157 0.0366 0.0365 0.00019 0.0187 0.0186 0.00009

2502500421 353 0.0258 0.0263 -0.00053 0.0165 0.0174 -0.00091

2502700151 1723 0.0431 0.0446 -0.00151 0.0179 0.0178 0.00014

3300120041 49 0.0373 0.0373 0.00001 0.0149 0.0149 0.00004

3301100201 47 0.0311 0.0311 -0.00001 0.0177 0.0176 0.00007

3301110101 47 0.0334 0.0334 0.00002 0.0195 0.0195 0.00007

3301150011 2634 0.0464 0.0479 -0.00145 0.0186 0.0158 0.00288

3301300071 50 0.0282 0.0283 -0.00008 0.0188 0.0188 0.00002

3301500121 39 0.0343 0.0344 -0.00003 0.0171 0.0170 0.00002

3301500131 141 0.0332 0.0333 -0.00011 0.0193 0.0192 0.00012

3301500151 162 0.0315 0.0316 -0.00010 0.0184 0.0181 0.00027

3301730021 40 0.0339 0.0339 -0.00005 0.0167 0.0167 0.00001

 

Uncertainty in Spatial Interpolation 
 
 We take three approaches to estimate the impacts of the errors of spatial interpolation of 
ozone concentrations. 
 
Jackknife Estimates of Uncertainty 
 
 We estimate the errors of spatial interpolation using the jackknife method (Efron, 1980; 
Stone, 1974), in which we drop out one monitor, use the spatial interpolation method to estimate 
concentrations at the location of that monitor, and compare the predicted to the observed values 
for each hour, giving a distribution of errors for that monitor.  We do this for every monitor in 
the study area, thereby characterizing the errors of spatial interpolation in that area by a single 
distribution.  This method tends to overestimate the size of the errors, because all monitors are 
used in the actual interpolation, reducing the interpolation errors to zero at the locations where 
the errors are estimated. 
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 For each site, we calculate the observed/predicted ratio for each hour, and the 25th and 
75th percentiles of these ratios.  For Boston, 2004, the means (over all sites) of these site-specific 
quartiles are 0.93 and 1.2, with a central value of 1.065, and we approximate the uncertainty of 
the spatial interpolation by a normal distribution of observed/predicted ratios with quartiles 0.93 
and 1.2, giving a standard deviation of 0.2.  Although it may appear that the interpolation 
generally underpredicts in this case (ratio > 1), we cannot conclude this with confidence since all 
sites are used in the interpolation, which acts to correct this bias.  If a bias remains, we do not 
know whether it is positive or negative; therefore, we assume that the interpolation is unbiased. 
 
 
Compare Exposure Modeling Results Using Different Spatial Interpolation Methods 
 
 A wide range of methods for spatial interpolation of ozone have been employed over the 
years, and no one method has emerged as clearly superior to others.  We plan to perform spatial 
interpolation with six different methods and run APEX with the resulting concentration fields.  
Comparison of these exposure modeling results, taken in conjunction with jackknife assessments 
of how well the interpolation methods perform, will provide a quantitative assessment of the 
effects of spatial interpolation uncertainty on the exposure modeling results. 
  
 At this time we have results for the nearest neighbor and inverse distance squared 
methods (Table 5 shows this for Boston, 2004).  We are planning to perform this analysis for the 
Voronoi neighbor averaging method, bilinear interpolation, kriging, and the Bayesian maximum 
entropy (BME) method (Christakos et al., 2002). 
 
Table 5.  Comparison of predicted exposures using different spatial interpolation methods 

Percent of population experiencing 8-hour 
ozone exposures above these levels 

City / 
Interpolation 
Method 

Jackknife 
RMSE, 

hourly O3 

Jackknife 
RMSE for O3 
> 0.04 ppm 0.06 ppm-8hr 0.07 ppm-8hr 0.08 ppm-8hr 

Boston 2004      
Nearest nhbr 0.01 0.01 30.6 8.3 1.7 
1/distance2 0.008 0.01 26.7 6.4 0.85 
% difference   −13% −23% −50% 
 
 
Decreasing Radius of Representativeness of Monitors 
 
 In general, the closer a location is to a given monitoring site, the more accurately 
measurements at that site will represent the concentrations at the location.  APEX allows the user 
to specify a radius of representativeness for the air quality monitors, and only estimates 
exposures to population residing in a Census tracts located within this radius of a monitoring site 
(the center of the tract is required to be within this distance of a monitor).  Conversely, the 
further away locations are from monitoring sites, the more uncertain the spatially interpolated 
concentrations tend to be at these locations.  In choosing the radius of representativeness there is 
a tradeoff between more accurate concentrations (smaller radius) and better characterization of 
the population (larger radius). 
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 We conducted a series of APEX simulations varying the radius of representativeness of 
air quality monitors from 10 km to unlimited (within the modeled area) for the Boston CSA and 
using the nearest-neighbor spatial interpolation method.  The results of these simulations are 
depicted in Figure 7 (2004 base case), Figure 8 (2002 base case), and Figure 9 (2002 current 
standard).  The vertical axes are the fractions of the population, and the values for the unlimited 
radius are plotted at 60 km in these figures.  Table 6 shows the 2002 population coverage for the 
different radii analyzed.  This analysis indicates that the nearest-neighbor method of spatial 
interpolation may be introducing a small positive bias into the exposure modeling results. 
 

Table 6.  Population coverage of 2002 ozone monitors in Boston CSA 
Radius about 
monitors (km) 

Population coverage 
within the radius 

10 47% 
15 65% 
20 81% 
25 89% 
50 99% 

unlimited 100% 
 

 
Figure 7.  Sensitivity to monitor radius of influence of the fractions of four population 

groups with 8-hour exposures > 0.08 ppm-8hr, Boston, 2004 base case 



 17 

 
Figure 8.  Sensitivity to monitor radius of influence of the fractions of four population 

groups with 8-hour exposures > 0.08 ppm-8hr, Boston, 2002 base case 
 

 
Figure 9.  Sensitivity to monitor radius of influence of the fractions of four population 

groups with 8-hour exposures > 0.08 ppm-8hr, Boston, 2002 current standard 
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Summary of Uncertainty in Neighborhood-Scale Concentrations 
 
 Table 7 summarizes the uncertainties of neighborhood-scale concentrations for the 
Boston CSA.  As discussed above, we are assuming that these uncertainties are normally 
distributed.  It seems reasonable to assume that these three components of uncertainty are 
independent.  The uncertainties of measurement error and missing data replacement are additive, 
while the spatial interpolation uncertainties are multiplicative, and so they cannot be directly 
combined.  However, the spatial interpolation uncertainties are at least an order of magnitude 
greater than the other uncertainties, and we approximate the combined uncertainties by the 
spatial uncertainties (Table 7). 
 
Table 7.  Uncertainty distribution parameters for neighborhood-scale concentrations 
Component of uncertainty Mean (bias) Standard deviation 
Measurement error (additive) small 0.00135 (ppm) 
Missing data replacement (additive) insignificant 0.004 (ppm) 
Spatial interpolation (ratios) none 0.2 
Combined uncertainties (ratios) none 0.2 
 

Uncertainty of Outdoor Near-Roadway Concentrations 
 

Concentrations of ozone near roadways are particularly difficult to estimate due to the 
rapid reaction of ozone with nitric oxide (NO) emitted from motor vehicles (forming NO2 and 
O2), which reduces ozone concentrations in the vicinity of the roadway. 

 
APEX adjusts ambient ozone concentrations for NO titration near roadways through the 

use of proximity factors.  Proximity factors which adjust concentrations according to the 
locations of people’s activities can be input as single values or distributions to APEX.  They are 
intended to scale the concentrations measured at fixed-site monitors to better represent the 
concentrations at other locations.  In APEX they can serve the dual purpose of incorporating 
random concentration variability into the model. 

 
 We developed distributions for near-roadway proximity factors based on data from the 
1994 Cincinnati Ozone Study (American Petroleum Institute, 1997, Appendix B; Johnson et al. 
1995).  Table 8 lists these distributions.  Vehicle miles traveled in 2003 by city and road type 
obtained from the Federal Highway Administration were used to estimate the distribution of road 
types (local, urban, interstates) for each modeled city.  The development of these proximity 
factor distributions is described in Appendix A of the Exposure Analysis TSD. 
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Table 8.  Near-roadway proximity factor distributions 
  Location Mean Standard 

Deviation 
Lower 
Bound 

Upper 
Bound 

outdoors near road and parking lots 0.755 0.203 0.422 1.0 
in-vehicle, local roads 0.755 0.203 0.422 1.0 
in-vehicle, urban roads 0.754 0.243 0.355 1.0 
in-vehicle, interstates 0.364 0.165 0.093 1.0 
 

We conducted a brief review of literature on near-roadway titration of ozone by NO to 
obtain information which could be used to estimate the uncertainty of the near-roadway 
proximity factor distributions.  Rodes and Holland (1981) found reductions in ozone downwind 
of a Los Angeles freeway ranging from more than 90% at 8 meters to small reductions at 500 
meters from the roadway.  Lin et al. (2001) report a 30-40% reduction in ozone in a high traffic-
density neighborhood.  Suppan and Schadler (2004) in a modeling study using CMAQ predict 
ozone reductions from 3 to 20 ppb downwind of a major highway, with small changes in ozone 
concentrations as far as 40 km from the highway.  Beckerman et al. (2006) measured ozone and 
other pollutants at various distances from a heavily traveled highway in Toronto and find 
significant variation even in 7-day average ozone concentrations, as shown in Figure 10. 
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Figure 10.  Pollutant concentrations around Highway 401, Toronto (Beckerman et al., 2006) 
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Based on this limited information we estimate the uncertainty of the means of the near-
roadway proximity factor distributions to be uniformly distributed as summarized in Table 9.  
The standard deviations of the near-roadway proximity factor distributions have a lesser effect 
than the means, and we are not assigning uncertainties to them.  The vehicle miles traveled by 
road type are much less uncertain than the titration adjustments, and therefore we are not taking 
into account their uncertainty.  
 
Table 9.  Uncertainty of the means of near-roadway proximity factor distributions 

Distribution of uncertainty (normal) Location Uncertainty of 
the mean of the 
distribution 

Uncertainty Mean Standard 
deviation 

outdoors 
near road 
and parking 
lots 

90% within  
[0.605, 0.905] 

90% within 
[−0.15, 0.15] 

0 0.09 

in-vehicle, 
local roads 

90% within  
[0.605, 0.905] 

90% within 
[−0.15, 0.15] 

0 0.09 

in-vehicle, 
urban roads 

90% within  
[0.604, 0.904] 

90% within 
[−0.15, 0.15] 

0 0.09 

in-vehicle, 
interstates 

90% within  
[0.214, 0.514] 

90% within 
[−0.15, 0.15] 

0 0.09 

 

Uncertainty of Indoor Near-Roadway Concentrations 
 

APEX considers a person to be near a roadway when their activity indicates this.  There 
is no consideration of the effects of roadways on the concentrations in residences near roadways, 
and this is an additional source of uncertainty, since a significant portion of the population live 
near roadways (the 2001 American Housing Survey (U.S. Census Bureau, 2002) estimated that 
an eighth of the housing units in the U.S. are within 300 feet of a four or more lane highway, 
railroad, or airport).  We plan to quantify the effects of this uncertainty by performing the 
exposure modeling to account for this in a simplistic way, and comparing those modeling results 
with the standard APEX results. 

 
We have a data base that specifies the fraction of the population in each Census tract that 

live: 
a) 0-75 m from a major roadway,  
b) 75-200 m from a major roadway, and  
c) >200 m from a major roadway.  

 
The data are also stratified by six age groups: 0-1, 2-4, 5-15, 16-17, 18-64, 65+. 
 

  We plan to run APEX for each of these three subsets of the population, using proximity 
factors to decrease the ambient concentrations outside their residences in accordance with the 
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distance from roadways.  The combined results of these three simulations will account for 
decreased exposures in residences near roadways.  A comparison of these model results with the 
standard simulations will provide quantitative estimates of bias from this source of uncertainty. 

 
Note that the phenomenon of titration by NO near roadways also has the potential to bias 

the exposure results in the other direction, in cases where the ozone monitors are located in areas 
of high traffic.  Then the measurements can be biased low in comparison with other locations not 
affected by traffic emissions.  Guidance for siting monitors gives criteria for how far to site 
monitors from roads to avoid interference that would make the monitor unrepresentative of the 
surrounding area (EPA, 1998).  However, sometimes the siting of monitors near roadways is 
unavoidable.  We are weighing the value of assessing the potential impact of traffic emissions on 
measurements for one or two of the modeled cities to ascertain whether or not this is an issue 
that needs to be considered.  The location of each monitor in a city with respect to distance from 
roadways and traffic volume could be characterized, and adjustment factors be applied to 
concentrations at sites near roadways with as much specificity as the data allow (e.g., daytime 
vs. nighttime adjustments).  APEX simulations could then be performed with the adjusted 
concentrations to assess the influence of this source of uncertainty. 

 

Uncertainty of Ambient Commuting Concentrations 
 
 The ambient concentrations for a commuter are calculated in APEX as the average of the 
concentrations at the home and work locations, unless the worker commutes to a destination 
outside the study area, in which case the average ambient air concentration over all air districts 
in study area is used.  We are considering modeling the uncertainty of this treatment by using a 
weighted average of the home and work tract concentrations in the Monte Carlo simulations, 
with weights distributed on the unit interval [0,1].  This is in addition to the general uncertainty 
of the ambient concentrations. 
 

Uncertainty of the Vertical Profile of Concentrations 
 
 Ozone concentrations vary with height within the lower boundary layer, which can lead 
to exposure error for people living in high-rise apartment buildings (significantly higher than the 
ozone measurements) and in cases where an ozone monitor is significantly higher than the 
surrounding population.  The CD (page AX3-202) states that: 
 

A study of the effect of elevation on O3 concentrations found that concentrations 
increased with increasing elevation. The ratio of O3 concentrations at street level (3 m) 
compared to the rooftop (25 m) was between 0.12 and 0.16, though the actual 
concentrations were highly correlated (r = 0.63) (Väkevä et al., 1999). Differential O3 
exposures may, therefore, exist in apartments that are on different floors. Differences in 
elevation between the monitoring sites in Los Angeles and street level samples may 
have contributed to the lower levels measured by Johnson (1997). Furthermore, since 
O3 monitors are frequently located on rooftops in urban settings, the concentrations 
measured there may overestimate the exposure to individuals outdoors in streets and 
parks, locations where people exercise and maximum O3 exposure is likely to occur.  
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 We do not intend to address this source of uncertainty at this time, due to a lack of data 
on the vertical distribution of concentrations near the surface in urban areas. 
 

Uncertainty in Concentration Rollback to Reflect Alternative Standards 
 
 One method for assessing the uncertainty of the rollback adjustments used in our 
modeling analyses is to apply the rollback procedure to historical air quality data and compare 
the observed air concentrations with the rolled-back concentrations (Rizzo, 2005).  There are 
difficulties in translating this uncertainty into uncertainties of the APEX model inputs, and so we 
use a different approach. 
 
 We plan to use the quadratic rollback method to adjust ozone concentrations to reflect the 
current 8-hour standard for the four 3-year periods 2000-2002, 2001-2003, 2002-2004, and 
2003-2005.  For each of these 3-year periods, design values will be calculated, and hourly ozone 
concentrations rolled-back for the three years.  Since each of these 3-year sets of concentrations 
represents just attaining the current standard, differences between them reflect uncertainty of the 
rollback method.  Each of these four 3-year periods will be modeled using APEX for selected 
cities. The variability in the model results for each city will provide estimates of the uncertainty 
of rollback in the modeled exposures.  Comparisons will be based on the distributions of 
modeled exposures over the 3-year periods, since it is the 3-year period which is being brought 
to just attaining the standard, and not each individual year. 
 
 The uncertainty of the rollback method is, to some extent, confounded with the 
uncertainty of a given area being in attainment, since the year-to-year variability in meteorology 
can have a significant effect on the design value of an area.  An unusually cool and rainy summer 
can result in low ozone concentrations for that year, and significantly reduce the design value 
(which is the average of the three 4th highest concentrations for the 3-year period).  A 3-year 
period with very different ozone levels often will have higher population exposures than a 3-year 
period with comparable ozone levels (where both periods have the same design value, or both 
being just in attainment of the standard).  We can illustrate this phenomenon by comparing the 
distributions of air quality in an Eastern city rolled back to the current standard based on [a] the 
2002-2004 design value and [b] a design value corresponding to three years of 2002 air quality.  
The 2002-2004 period had significant year-to-year variation in the East, and the hypothetical 
scenario of three years of 2002 air quality has no year-to-year variation. 
 
 Figures 11 and 12 graph the “annual design values” (the 4th highest 8-hour average 
concentrations at the monitor which yields the 3-year design value), respectively, for [a] and [b], 
for the base and “rollback to just-attaining” scenarios for New York (concentrations from Table 
5A-8 in the Staff Paper).  It is apparent from these figures that there would be more exposures to 
concentrations greater than 0.08 ppm under [a] than [b] (for the ‘just-attaining” scenario), while 
the number of exposures to concentrations greater than 0.06 ppm may not be that different. 
 
 Figure 13 and Figure 14 contrast the distribution of hourly ozone concentrations (above 
0.08 ppm) in New York for 2002 (the “high year”) air quality rolled back using these two design 
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values these.  Figure 15 combines into one chart these two figures and the corresponding 
distributions based on 2004 (“the low year”) data.  Figure 16 presents a more relevant 
comparison, combining the ozone concentrations for the high and low years (the most relevant 
comparison would combine all three years and compare population exposures instead of 
concentrations). 
 

Meteorological Data 

Uncertainty of Ambient Temperatures 
 

Temperatures are the only meteorological inputs to APEX for this application.  
Temperatures input to APEX are specified not as distributions but as hourly and daily values 
measured from one or more monitors.  Thus, temporal and spatial variability are accounted for.  
Due to the smooth nature of the temporal and spatial variability of temperatures, the uncertainty 
of the temperature inputs is typically small.  Most of the temperature sites have no missing data; 
a few have 1 or 2 days missing during the year.  Thus, the uncertainty from the estimation of 
missing temperature data is insignificant. 
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Figure 11.  Rollback based on 2002 to 2004 concentrations 

Figure 12.  Rollback based on 3 years of 2002 concentrations 
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Figure 13.  New York high-year (2002) ozone concentrations rolled back to the current 
standard, based on the 2002/2003/2004 design value 
 

 
Figure 14.  New York high-year (2002) ozone concentrations rolled back to the current 
standard, based on the 2002/2002/2002 design value 



 26 

0.08 0.084 0.088 0.092 0.096 0.1 0.104 0.108 0.112 0.116 0.12

low year (02/02/02)
high year (02/02/02)

low year (02/03/04)
high year (02/03/04)

0

100

200

300

400

500

600

 
Figure 15.  New York high and low year hourly ozone concentrations rolled back to the current standard, based on 2002-2004 
and 3 years of 2002 design values 
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Figure 16.  New York hourly ozone concentrations (high and low years combined) rolled back to the current standard, based 
on 2002-2004 and 3 years of 2002 design values 
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Modeling Concentrations in Microenvironments 
 
 The importance of estimation of concentrations in indoor microenvironments (homes, 
offices, schools, restaurants, vehicles, etc.) is underscored by the finding that personal exposure 
measurements of ozone are often not well-correlated with ambient measurements (CD, pages 3-
59 to 3-61). 
 
 The microenvironmental characteristics used to model the concentrations in 
microenvironments tend to be highly variable, both in different microenvironments (e.g., 
different houses have varying characteristics) and within a single microenvironment (e.g., the 
characteristics of a specific house can vary over time).  Since APEX is a probabilistic model, if 
data accurately characterizing this variability can be provided to the model, this will not result in 
uncertainties.  However, even if we can appropriately characterize the distributions of each 
microenvironmental parameter, there will be significant uncertainties unless we appropriately 
model the relationships (correlations) between the different microenvironmental parameters, as 
well as the relationships between the microenvironmental parameters and other components of 
the exposure model (e.g., people’s activities).  The mass balance and factors models used to 
calculate ozone concentrations in the 12 microenvironments modeled (Table 10) are described in 
the Exposure Analysis TSD and in the APEX TSD. 
 

Table 10.  Microenvironments Modeled For Ozone Exposure 
Microenvironment Model Parameters1 

Indoors – Residence Mass balance AER and DE 
Indoors – Bars and restaurants Mass balance AER and DE 
Indoors – Schools Mass balance AER and DE 
Indoors – Day-care centers Mass balance AER and DE 
Indoors – Office Mass balance AER and DE 
Indoors – Shopping Mass balance AER and DE 
Indoors – Other Mass balance AER and DE 
In-vehicle – Cars and Trucks Factors PE and PR 
In-vehicle - Mass Transit Factors PE and PR 
Outdoors – Near road Factors PR 
Outdoors – Public garage - parking lot Factors PR 
Outdoors – Other Factors PR 

1 AER: Air Exchange Rate, DE: Decay rate; PE: Penetration factor; PR: Proximity factor 
 

Uncertainty of Air Exchange Processes 
 
 The air exchange rate (AER) is one of the most important factors in determining the ratio 
of outdoor to indoor concentrations of ozone.  AERs are highly variable at hourly and daily time 
scales, both within a microenvironment over time and between microenvironments of the same 
type in different buildings.  AERs depend strongly on the physical characteristics of a 
microenvironment and also on the behavior of the occupants of the microenvironment.  For 
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example, the concentration in a house when a person enters the house will depend on the AER of 
the preceding hour, which could depend on whether or not there was someone else already in the 
house.  There is also some dependence on the atmospheric conditions (temperature, humidity, 
and wind speed), both directly (higher wind speeds result in higher AERs in most circumstances) 
and indirectly (occupants can open and close windows in response to the outdoor temperature). 
 
 AER measurements (which are used to derive the APEX input distributions for a city) 
typically involve fitting tracer concentrations to simple mass balance models.  This analysis of 
AER uncertainty currently does not take into account the uncertainty in this measurement/ 
modeling process. 
 
Residential Air Exchange Rates 
 
 City-specific lognormal distributions of AERs for use with the APEX ozone model were 
developed based on an analysis of AER data from several studies (Exposure Analysis TSD, 
Appendix A).  The parameters of these distributions depend on the outside temperature and 
whether or not the residence has air conditioning. 
 
 We assess the within-city uncertainty by using a bootstrap distribution to estimate the 
effects of sampling variation on the fitted geometric means (GMs) and standard deviations 
(GSDs) for each city.  This analysis is described in the Exposure Analysis TSD.  The bootstrap is 
a nonparametric method for estimating uncertainty which accounts for the correlation between 
the GMs and GSDs (e.g., see Figure 18), so that there are not unrealistic combinations of GMs 
and GSDs.  The bootstrap distributions assess the uncertainty due to random sampling variation 
but do not address uncertainties due to the lack of representativeness of the available study data. 
 This can be assessed, to some extent, by comparing AER distributions from different studies in 
the same city. 
 
 Several bootstrap distributions were developed, one for each city-temperature-A/C 
combination.  Examples of two of the bootstrap uncertainty distributions are provided in Figure 
17 and Figure 18.  Figure 17 shows the uncertainty distribution around the model input values 
GM=0.916 and GSD=2.451, which specify the distribution of AERs of residences in Houston 
without A/C when ambient temperatures are above 20 degrees C (24-hour average).  Similarly, 
Figure 18 shows the uncertainty distribution for the AER distribution parameters for Los 
Angeles for residences without A/C when the ambient temperature is above 25 degrees C.  Note 
that in these figures there is only one “original data” point (this is the APEX input value), 
indicated by the intersection of the cross-hairs in the figure.  The clouds of points are all 
bootstrapped data.  In the Monte Carlo uncertainty simulations, a GM, GSD pair is selected at 
random from the appropriate bootstrap uncertainty distribution, and used for input to APEX.  
(APEX then selects AER values randomly from the log-normal distribution with the bootstrap 
GM and GSD.) 
  
 We estimate the between-city variability by examining the variation of the GMs and 
GSDs across cities.  Figure 19 shows the variation of GMs between the six cities or regions for 
which we have developed AER distributions, for the temperature ranges and A/C presence we 
are using to specify AER distributions in the inputs to APEX (Y means the residence has A/C, N 
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means it does not).  Most of the cities modeled do not have city-specific AER distributions, and 
use AER distributions from a different city (Table 11).  We use the city-to-city variability of the 
GMs and GSDs to characterize the uncertainty of applying city-specific AER distributions to a 
different city for which there are no AER data available.  We model this uncertainty using a 
weighted bootstrap sampling of these GM,GSD pairs, with the weights based on similarity of the 
modeled city to the cities/regions for which AERs were developed.  Thus, for Boston we assign 
higher weight to the New York distributions and lower weights to the Houston and Los Angeles 
area-specific distributions, as given in Table 12. 
 
Non-Residential Air Exchange Rates 
 
 We are using a placeholder estimate for the uncertainty of the GM of the distribution of 
non- residential AERs used in APEX, assuming for now that this uncertainty is uniformly 
distributed within ±5 percent of the GM (5% of 1.109 = 0.06), and no uncertainty for the GSD.  
We plan to explore the literature to find a reasonable estimate for this uncertainty. 
 

Uncertainty of Residential Air Conditioning Prevalence and Use 
 
 The AER distributions input to APEX are conditioned on the presence or absence of air 
conditioning, and estimates of residential air conditioning prevalence rates for each modeled area 
were obtained from the American Housing Survey of 2003.  Appendix F of the Exposure 
Analysis TSD gives confidence intervals for the air conditioning prevalence rates, reproduced 
here in Table 13.  We model the uncertainty of the prevalence rates with zero-mean normal 
distributions with standard deviations equal to the standard errors given in Table 13. 
 
 In addition to the uncertainty of prevalence rates, there is uncertainty about the amount of 
use of A/C given that a house or office has A/C.  However, most of the studies of AERs that we 
used to develop AER distributions report presence or absence of air conditioning, and not 
whether the A/C was being used (Appendix A, Exposure Analysis TSD).  Thus, the variability 
resulting from the use or non-use of A/C is built into the AER distributions, and is being taken 
into account.  If, in the future, we have sufficient data to allow us to characterize AERs 
separately for conditions of use and non-use, then we can supply APEX with these distributions, 
as well as distributions for use vs. non-use.  With the availability of such refined model inputs, 
the uncertainty of use vs. non-use will become more relevant. 
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Figure 17.  Bootstrap distribution of AER uncertainty for Houston, no A/C, >20 C 
 
 

 
Figure 18.  Bootstrap distribution of AER uncertainty for Los Angeles, no A/C, >25 C 
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Figure 19.   AER Geometric Means For Different Areas by Temperature Range (C) and A/C Presence (Yes/No) 
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Table 11.  Assignment of residential air exchange rate distributions to modeled cities 
Modeled city Air exchange rate distribution 

Atlanta, GA, A/C Research Triangle Park, A/C only 

Atlanta, GA, no A/C All non-California, no A/C 

Boston, MA New York 

Chicago, IL New York 

Cleveland, OH New York 

Detroit, MI New York 

Houston, TX Houston 

Los Angeles, CA Los Angeles 

New York, NY New York 

Philadelphia, PA New York 

Sacramento Inland parts of Los Angeles 

St. Louis All non-California 

Washington, DC, A/C Research Triangle Park, A/C only 

Washington, DC, no A/C All non-California, no A/C 
 
 
 
Table 12.  Bootstrap sampling weights for Boston for uncertainty of the use of non-city-
specific residential AER distributions 
City/Region Sampling weight 
New York 0.6 
Houston 0.0 
Los Angeles 0.1 
All non-California 0.2 
Inland parts of Los Angeles 0.0 
Research Triangle Park 
(A/C only) 0.1 
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Table 13.  Uncertainty of air conditioning prevalence rates 
City Prevalence

rate
Standard 

error
Lower 95% 
confidence 

bound

Upper 95% 
confidence 

bound
Atlanta, 2003 97.0 1.18 94.7 99.3
Boston, 2003 85.2 2.14 81.0 89.4
Chicago, 2003 87.1 1.39 84.4 89.8
Cleveland, 2003 74.6 3.38 68.0 81.3
Detroit, 2003 81.4 1.76 78.0 84.9
Houston, 2003 98.7 0.67 97.4 100.0
Los Angeles, 2003 55.1 1.70 51.7 58.4
New York, 2003 81.6 1.27 79.1 84.1
Philadelphia, 2003 90.6 1.30 88.1 93.2
Sacramento, 2003 94.6 1.93 90.8 98.4
St. Louis, 2003 95.5 1.67 92.3 98.8
Washington DC, 2003 96.5 1.00 94.5 98.4

 
 

Uncertainty of Deposition, Filtration, and Chemical Reaction Processes 
 
 The removal of ozone from a microenvironment due to deposition, filtration, and 
chemical reaction processes is modeled in APEX by a combined distribution of ozone decay 
rates.  The rate of deposition of ozone to a surface depends on the material the surface is made 
of, the humidity, and the concentration of ozone.  The rate of removal of ozone due to deposition 
in a specific microenvironment also depends on the dimensions, surface coverings, furnishings, 
and the ratio of surface area to volume in the microenvironment.  The degree of ozone loss 
through filtration is a function of the HVAC system in the microenvironment.  Other chemical 
processes that contribute to reduction in ozone concentrations indoors include reaction with NOx 
emitted from gas stoves and reaction with VOCs from cleaning products. 
 
 The distribution of ozone decay rates used in the present study represents the decay rates 
measured in a study of 17 residences in Southern California (Lee et al., 1999). A lognormal 
distribution was fit to the measurements from this study, yielding a geometric mean of 2.5 and a 
geometric standard deviation of 1.5.  These values are constrained to lie between 0.95 and 8.05 
hour-1.   We estimate the uncertainty of this distribution using a bootstrap method described by 
Cullen and Frey (1999).  This is a method for quantifying sampling uncertainty 
nonparametrically, but does not account for uncertainty resulting from nonrepresentativeness of 
the study in relation to the urban areas we are modeling.  We found that the bootstrap-derived 
uncertainties can be adequately represented by independent normal distributions with zero means 
and standard deviations of 0.1 for the GM and 0.05 for the GSD. 
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 We plan to review the literature on ozone loss in microenvironments due to deposition, 
filtration, and chemical reaction processes to estimate the uncertainty resulting from 
nonrepresentativeness of using the results of only one study.  As a placeholder for this 
uncertainty, we assume that the GM of 2.5 is unbiased but could be off by 10 percent with 90 
percent confidence, and represent this uncertainty with a normal distribution with a standard 
deviation of 0.15. 
 
 It is reasonable to assume that this uncertainty is independent of the sampling 
uncertainty, and therefore we can combine these uncertainties by summing their variances.  
Table 14 summarizes our preliminary estimates of the uncertainty of ozone decay rates. 
 
Table 14.  Uncertainty of lognormal distributions of ozone decay rates (per hour) 
Source of Uncertainty Geometric Mean Geometric Standard Deviation 
Finite sample normal distribution, 

mean = 0,  st. dev. = 0.1 
normal distribution, 
mean = 0,  st. dev. = 0.05 

Nonrepresentativeness of 
the study1 

normal distribution, 
mean = 0,  st. dev. = 0.15 

 

Combined uncertainty normal distribution, 
mean = 0,  st. dev. = 0.18 

normal distribution, 
mean = 0,  st. dev. = 0.05 

1 Preliminary estimate of uncertainty (see text) 
 

Uncertainty of Vehicle Penetration Factors 
 
 A vehicle penetration factor distribution (normal, mean 0.3, standard deviation 0.232, 
lower bound 0.1, upper bound 1.0) was developed with data from the Cincinnati Ozone Study 
(Johnson et al, 1995).  This was a scripted study using three cars in one city in 1994, and 
therefore is not likely to be representative of general vehicle ventilation conditions.  We plan to 
conduct a literature review and obtain available data to provide information on the uncertainty of 
vehicle penetration factors.  We will complete Table 15 with this information, summarizing the 
results of studies which measured vehicle penetration factors or ratios of ozone concentrations 
inside and outside of vehicles.  The range of the mean penetration factors in these studies will 
provide information on the uncertainty of these distributions (some studies are more 
representative of general conditions than others).  For the current uncertainty analysis, we are 
using a placeholder estimate that the mean of the vehicle penetration factor distribution is likely 
to lie within ±0.2 of the base estimate, and may be biased low by 5 percent for vehicles traveling 
at higher speeds.  We feel that this estimate is more realistic than the implied uncertainty of zero 
if we do not include this source of uncertainty due to a lack of data.  We represent this 
uncertainty with normal distributions so that the mean values input to APEX are between 0.1 and 
0.5 with 90 percent probability, with an average value of zero, for vehicles on local and urban 
roads, and mean values between 0.115 and 0.515 with 90 percent probability, with an average 
value of 0.015 (5% of 0.3) for vehicles on interstate highways.  Table 16 gives the means and 
standard deviations of the normal distributions that represent the (additive) uncertainty of the 
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vehicle penetration factors input to the model.  As noted above, this estimate of uncertainty is 
essentially a placeholder until we have further information. 
 
Table 15.  Summary of ozone vehicle penetration factor studies (incomplete) 
Study description Mean 

penetratio
n factor 

Cincinnati Ozone Study (Johnson et al, 1995).  Scripted study using three cars in 
Aug.-Sept. 1994.  812 measurements. 

0.30 

RTP Patrol Cars study (Riediker et al., 2003). Ozone concentrations measured 
with Ogawa badges in vehicles and at the roadside. 25 measurements. 

0.46 

  
  
 
 
 
Table 16.  Uncertainty of the means of vehicle penetration factor distributions 
Vehicle class Mean1 Standard 

deviation1 
Traveling on local and urban roads 0.0 0.12 
Traveling on interstate highways 0.015 0.12 
1 of normal distributions.  These are placeholder estimates of uncertainty (see text). 
 

Characterization of Population Demographics 

Uncertainty of Demographic Model Inputs  
 
 Data from the 2000 Census provide the demographics of the modeled populations.  When 
modeling a year close to the year of the Census, the uncertainty of the demographic mix of the 
population is relatively small, compared with the other uncertainties of APEX, and therefore we 
are not treating this as an explicit source of uncertainty in this analysis.  The Census data input to 
APEX at a tract level are: 
 
• age 
• gender 
• race (not used in this modeling analysis) 
• home location (Census tract) 
• work location (Census tract) 
• employment probabilities (by age, gender, tract) 
• between-tract commuting probabilities 
 
 However, we can quantify changes in the size of the total populations between the year of 
the Census (2000) and the year being modeled.  Table 17 lists the percent increase in population 
from 2000 to 2002 and 2004 for the 12 modeled CSAs (calculated from the Subcounty 
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Population Estimates, April 1, 2000 to July 1, 2004, Population Estimates Program, U.S. Bureau 
of the Census Release dated June 30, 2005). 
 
Table 17.  Change in populations from 2000 to 2002 and 2004 

Urban Area (CSA) 2000 to 2002 
% change 

2000 to 2004 
% change 

Atlanta, GA 5 10 

Boston, MA 1 1 

Chicago, IL 2 3 

Cleveland, OH 0 0 

Detroit, MI 0 1 

Houston, TX 5 9 

Los Angeles, CA 3 7 

New York, NY 1 2 

Philadelphia, PA 1 2 

Sacramento, CA 6 11 

St. Louis, MO 1 2 

Washington, DC 3 5 
 
 The biases resulting from population changes likely cancel to a large degree when 
assessing relative differences between exposure and risk scenarios.  These biases could be 
corrected for by increasing the counts of people exposed to ozone by these percentages. 
 

Modeling People’s Activity Patterns 
 
 The distributions of the variability of the activities of individuals are generated by 
random sampling of daily activity patterns in the Consolidated Human Activity Database 
(CHAD).  CHAD consists of a collection of 24-hour “diaries” compiled from several studies.  
Each diary specifies the activities of an individual during the day, the locations of the individual 
during the activities, and the time period of each activity.  The durations of the events in the 
diaries range from a few minutes to several hours. 
     

Uncertainty of the Activity Pattern Data  
 
 The activity pattern database (CHAD) input to APEX is a very complex multivariate 
database which, due to its complexity, is less amenable than other model inputs to the Monte 
Carlo approach to uncertainty analysis.  In particular, it would be very difficult to vary a set of 
characteristics of CHAD and generate different diary databases reflecting the varied 
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characteristics.  In addition, we don’t know a priori what the important characteristics of CHAD 
are with respect to uncertainties of exposure modeling.  A further complication is that we must 
consider the uncertainties of CHAD in the context of the formation of a year-long activity 
sequence made up of diary days sampled from CHAD, for each individual simulated by APEX.  
The uncertainty that results from the method for assembling diary-days for each individual could 
also be important.  The following are limitations of CHAD that result in uncertainties in 
modeling exposures. 
 

• Diary errors, particularly the recall studies (72% of CHAD diaries are recall).  There is 
extensive literature on diary errors; Takarangi et al. (2006) provide an instructive 
commentary on factors which conspire to produce inaccurate diary data. 

• Incompatibility of the CHAD categories/codes with the coding schemes in the different 
studies in CHAD (each study’s codes are mapped to the CHAD codes) 

• Nonrepresentativeness of non-random studies 

• Nonrepresentativeness of older studies (in CHAD 42% are pre-1990, 98% are pre-1995) 

• Geographic (city-specific) nonrepresentativeness 

• Sample size limitation.  This is particularly important because of the stratification 
required for appropriate use of the data in exposure modeling. 

• Longitudinal autocorrelation of activities is not characterized. 

• Geographical locations of activities away from the home are unknown. 
 
 It is difficult to characterize the uncertainties in CHAD and to propagate these 
uncertainties to the model results, and we are taking two approaches to this problem, a 
multivariate statistical approach and a comparison with an independent activity database. 
 
Multivariate Statistics Approach  
 
 In this approach we identify the few statistics (i.e., characteristics) of the activity 
database that are most influential in terms of the exposure results of interest, using the 
classification and regression trees (CART) method.  We plan to try to estimate the uncertainty of 
these statistics, and from there quantify the uncertainty of the exposure modeling results due to 
uncertainty in the activity database.  The diagram on the next page illustrates this approach, and 
the details will be filled in if this approach is successful.  The success of this approach will 
depend on our ability to estimate the uncertainty of the CHAD statistics {Xi} (see diagram). 
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Random sample from CHAD

Run APEX

Exposure results
for simulation i

Statistics of 
characteristics of 
CHAD sample i

{Xi, i=1,…,N} {Yi, i=1,…,N}

N = 2,000 
bootstrap 
iterations

CART Analysis

Influential statistics X1, X2, X3
Y ≈ g(X1, X2, X3)     Eq. (1)

Estimate uncertainty of X1, X2, X3

Propagate uncertainty to Y via Eq. (1);
Monte Carlo approach

Diagram 1.  Activity Data Uncertainty Analysis 
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Comparison with an Independent Activity Database 
 
 An excellent activity database is available for comparison with the CHAD data used for 
the exposure modeling.  The Child Development Supplement (CDS) is part of the Panel Study of 
Income Dynamics (PSID), a longitudinal study of a representative sample of U.S. individuals 
and families which started collecting data in 1968.  In 1997, PSID supplemented its main data 
collection with additional data on 0-12 year-old children and their parents.  The CDS-I 
successfully completed interviews with 2,394 families (88%), providing information on 3,563 
children. In 2002-2003, CDS recontacted families in CDS-I who remained active in the PSID 
panel as of 2001. CDS-II successfully reinterviewed 2,019 families (91%) who provided data on 
2,907 children and adolescents aged 5-18 years.  Time diary accounting was carried out for one 
randomly selected weekday and one weekend 24-hour period for each child.  The User Guide for 
CDS-II (CDS, 2005) states: 
 

“The time diaries are one of the unique features of the CDS design. While the PCG 
[primary caregiver] and Child interviews include stylized questions about the children’s 
structured and unstructured activities, and activities with parents and absent parents, the 
time diaries provide detailed accounting of the type, number, duration, and location of 
activities during sampled 24-hour days, beginning at midnight for one randomly sampled 
weekday and one randomly sampled weekend day. Using the time diaries, we additionally 
collected information on the social context of the activity by specifying with whom the 
child was doing the activity and who else was present, but not engaging.” 

 
The entire datasets are available from the Institute for Social Research at the University of 
Michigan at http://www.psidonline.isr.umich.edu. 
 
 We plan to run APEX for children aged 5-18 years using CHAD and using the CDS-II 
data for all 12 cities (with 2002 air quality data) and compare the two sets of model results.  
Since the CHAD data for children (3,075 diary-days for ages 5-18) are all older than 1995, and 
the CDS-II data (more than 5,000 diary-days for ages 5-18) are recent (2002-2003) and 
nationally representative, we can assume that the CDS-II data are significantly less uncertain 
than CHAD, and will attribute the differences in model results primarily to uncertainty due to 
CHAD. 
 

Uncertainty of Longitudinal Diary Assembly  
 
 The method in APEX for assembling longitudinal diaries is intended to capture the 
tendency of individuals to repeat activities (this method is described in detail in the Exposure 
Analysis TSD).  There are two model input parameters that control the strength of this tendency 
in the simulated individuals, a population diversity statistic (D) and a within-person 
autocorrelation statistic (A).  For the current application, these statistics are based on the time a 
person spends outdoors each day, which is one of the most important determinants of exposure 
to ozone.  The D statistic reflects the relative importance of within-person variance and 
between-person variance in the outdoor time.  The A statistic specifies the day-to-day 
autocorrelation of outdoor time.  The values used for this analysis (0.2 for D and 0.2 for A) are 
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based on one study of school age children, and are considerably uncertain.  To reflect this 
uncertainty in the Monte Carlo analysis, we allow D and A to vary independently, uniformly 
within a factor of two of their base values (varying from 0.1 to 0.4)   Table 18 gives the 
distributions of (additive) uncertainty about the base values. 
 
Table 18.  Uncertainty of longitudinal diary parameters 
Parameter Distribution of uncertainty  
population diversity statistic (D) Uniform on [−0.1, 0.2] 
within-person autocorrelation statistic (A) Uniform on [−0.1, 0.2] 
 
 

Modeling Physiological Processes 
 

We plan to continue our review of the literature to quantify the uncertainties of these 
model inputs.  This will then be included in the Monte Carlo assessment of uncertainty.  Also see 
the discussion of the physiological model in APEX in the Model Uncertainty section below, 
which is relevant to this section. 

Uncertainty of Physiological Model Inputs 
 
 The physiological model inputs to APEX are provided as parameters for distributions 
reflecting population variability.  These have been recently updated by Isaacs and Smith (New 
Values for Physiological Parameters for the Exposure Model Input File Physiology.txt, 
December, 2005).  The following distributions and parameters are input to APEX: 
 
• Body mass (BM) (kg) distributions by age and gender 
• Normalized maximal oxygen uptake (NVO2max) distributions by age and gender 
• Resting metabolic rate (RMR) (kcal/min) age- and weight-specific regression equations 
• Metabolic equivalent (MET) distribution for each activity type (dimensionless).  

Distributions for a few activities are occupation- and age-dependent. 
• Effective ventilation rate (EVR) cutpoints for specifying levels of exertion (e.g., 1-hour 

average EVR > 16 indicates moderate or greater exertion) (single values) 
• Active PAI cutpoint (a person is characterized as “active” if their median daily PAI > 1.75) 

(single value) 
 
Body Mass Distributions 
 

The distributions of body mass come from the most recent data from the National Health 
and Nutrition Examination Survey (NHANES), compiled for the years 1999-2004 (CDC, 2005). 
 The NHANES body mass data are sampled and weighted to provide unbiased national estimates 
of body mass.  There will be some uncertainty due to regional/city differences.  However, the 
uncertainty in the body mass distributions is small compared to the other uncertainties in the 
APEX input data, and we are treating it as insignificant. 
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NVO2max Distributions 
 
 NVO2max is used in the calculation of the maximum metabolic activity level that can 
sustained for about five minutes (maximum permitted MET value).  These distributions were 
recently updated based on an extensive review of the literature and acquisition of data (Isaacs 
and Smith, 2005).  Parametric fits to data were used to calculate the values input to APEX.  We 
are considering the use of a bootstrap analysis of these fits to quantify the uncertainty of these 
inputs. 
 
Resting Metabolic Rates 
 

The uncertainty of the model for predicting resting metabolic rates is more relevant than 
the uncertainty of the coefficients input to APEX, and this is discussed below in the section on 
model uncertainty. 
 
MET Distributions 
 

The uncertainty of the MET distributions may turn out to be important.  Johnson (2003, 
section 9.6) states: 
 

Perhaps the weakest link in the algorithm is the step which requires the analyst to provide a 
distribution of possible MET values for each activity code.  These distributions are 
currently based on distributions provided by the developers of CHAD (McCurdy et al., 
2000).  Because available data were often insufficient to accurately define a distribution for 
each activity code, the developers tended to follow a conservative approach and over-
estimate the variability of each distribution.  Consequently, the Ve values produced by the 
ventilation rate algorithm may exhibit an excessive degree of variability. 

 
 McCurdy et al. (2000), in a paper describing the development of the METs distributions 
in CHAD, state: 
 

At this stage of development, the METs distribution assignment effort should be viewed as 
being preliminary in nature.  More work is needed to better relate activity codes used in 
human activity pattern surveys to those long used by exercise physiologists and clinical 
nutritionists. 

 
Most of the MET distributions in CHAD were developed based on Ainsworth (1993), 

which has been updated and revised in 2000 (Ainsworth, 2000, 2003).  CHAD has not yet been 
updated with this newer information. 

 
There is some uncertainty in the METS distributions related to the question of how well 

the MET distributions for defined activities represent the actual exertion during the discrete 
event duration.  For example, a diary event for an hour may be coded “play basketball” (which 
has a relatively high MET value), but in reality the MET value may be much lower for the hour, 
since it is likely that the hour-long event contains periods of rest.  Also, there is uncertainty due 
to the use of MET distributions for children, the elderly, and persons with compromised health, 
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since they were derived from healthy adults.  Puyau et al. (2002) show that adult-derived MET 
cutpoints are not applicable to children. 

 
There  are several studies which report MET distributions, which might be able to be 

used to evaluate the distributions APEX assigns to specific population groups.  For example, the 
Nurses’ Health Study in 1992 obtained MET-hours/week for over 67,000 subjects (Kroenke et 
al., 2005).  However, in most of these studies (including the Nurses’ Health Study) MET values 
are not directly measured. 
 
EVR Exertion Level Cutpoints 
 

The EVR cutpoints input to APEX are selected for the risk calculations (discussed in the 
Staff Paper) and are not considered as uncertain here.  (As opposed to the values of EVR 
calculated by APEX, which are uncertain.) 
 
Active PAI cutpoint 
 
 In order to address the uncertainty of the PAI cutpoint used in the exposure modeling 
analysis, one must have a clear definition of what it means for a person to be characterized as 
active.  Then one could assess the extent to which the PAI cutpoint classification is accurate.  
We do not have such a definition, and have essentially been using the PAI cutpoint as defining 
an active person.  If this is our working definition of “active” then there is no uncertainty in this 
model input.  We discuss this further in the section on model uncertainty below. 
 

Convergence 
 
 APEX is a probabilistic model with numerous inputs and parameters defined in terms of 
probability distributions which reflect the natural variability of the physiology and activities of 
individuals and of physical processes.  In order to realistically estimate distributions of 
population exposures, a sufficient number of individuals must be simulated by APEX to reflect 
these distributions.  For this discussion we denote the number of simulated individuals in an 
APEX run by NS.  As NS for a model run increases, the predicted exposure distributions 
converge to a limiting distribution.  If too few individuals are simulated, then the results of 
simulations with identical inputs will differ because too few values from the input distributions 
are being sampled to properly characterize them. 
 
 To illustrate this phenomenon, we ran thousands of APEX simulations with identical 
inputs, but with varying NS.  From each APEX run we calculated statistics from the predicted 
distributions of exposures, for example, the fraction of the population who experience one or 
more hourly exposures greater than 0.12 ppm-hr.  For runs with very few people simulated, these 
statistics are not stable and can vary widely; but for runs with many people simulated, the 
statistics have values that are closer together for the different model runs.  This is illustrated in 
Figure 20, where we have plotted the spread of one statistic against NS.  The horizontal axis 
gives NS, for 1000, 2000, up to 15,000, simulated in each APEX run.  The vertical axis is the 
fraction of the population who experience one or more hourly exposures greater than 0.12 ppm-
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hr, and the collection of those values for all runs with a given NS is presented as a box plot.  The 
bottom and top edges of a box indicate the 25th and 75th percentiles; whiskers are at the 5th and 
95th percentiles; and squares indicate values outside this range.  We see that for NS = 1000, this 
statistic ranges from 0.172 to 0.242 (±17% from the median), while for NS = 15,000 the range is 
only from 0.198 to 0.213 (±4% from the median). 
 

 
Figure 20.  Distribution of the predicted fractions of population who experience any hourly 
exposures  > 0.12 ppm-hr as a function of the number of profiles simulated 
 
 
 In practice, we model the distribution of exposures with a single simulation, and the 
deviation of this distribution from the limiting distribution (obtained with very large NS) is an 
error, or uncertainty, due to lack of convergence.  We could average together the results of 10 
APEX runs, but we would be better off simulating 10 times as many individuals in one run.  
Since model run time is proportional to NS, the NS that one can simulate depends on the 
computing capacity and the time requirements.  For the hundreds of APEX runs performed in 
support of the ozone NAAQS review, we simulated 60,000 individuals in each APEX run, to 
balance the desire for convergence with time limitations. 
 
 We have assessed the extent of “non-convergence uncertainty” for NS = 60,000 for one 
city, Atlanta, for the 2002 base case scenario, by conducting several APEX simulations identical 
to the single simulation whose results are used in the exposure assessment.  Figure 21 (children) 
and Figure 22 (all people) illustrate this uncertainty with the distributions of the number of 
people predicted by APEX who experience one or more 8-hour average exposures above 0.08 
ppm-8hr, concomitant with moderate or greater exertion.  This distribution is made up of the 
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predicted values for 1,268 APEX runs (one value from each run).  We see that there is significant 
spread, even simulating as many as 60,000 individuals. 
 
 In the next four tables, we describe 12 such distributions; Table 19 and Table 20, 
respectively for children and all people, under moderate exertion, and Table 21 and Table 22 
respectively for children and all people, under any exertion level.  The last row in Table 19 
corresponds to Figure 21 and the last row in Table 20 corresponds to Figure 22.  For example, in 
the distribution in Figure 21, 90 percent of the values are within 4.5 percent of the median (the 
median should be close to the limiting value as NS become large). 
 
 As expected, convergence is poorer for statistics that are in the tails of the distribution of 
population exposures.  So, as the exposure cutoff level increases (e.g., going down any column 
in these tables) or as the population group looked at becomes smaller (e.g., children vs. adults), 
NS needs to be larger to achieve the same level of convergence.  This is illustrated in the 
summary provided by Table 23. 
 
 In these simulations conducted to assess convergence, we allow the starting seed of the 
sequence of random numbers generated by APEX to be picked randomly based on the date and 
time of the start of the run, so each simulation has a different starting seed.  In the exposure 
simulations for the 12 cities described in the draft Staff Paper, we used different starting seeds 
for each city and year simulated, but used the same seed for all runs for a given city and year.  
For example, the same seed was used for the nine 2002 New York simulations (base case, 
current standard, 7 alternative standards).  In this way the non-convergence uncertainty largely 
cancels out from the comparisons of the runs for a given city, although we have yet to assess the 
extent of this cancellation. 
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Figure 21.  The distribution of the predicted number of children with at least one 8-hour 
exposure above 0.08 ppm-8hr at moderate or greater exertion for 1,268 repeated 
simulations of the Atlanta 2002 base case with 60,000 profiles 

 
 
 

Table 19.  Variability of replicate APEX simulations of 60,000 persons:  Medians, 5th, 10th, 25th, 75th, 
90th, 95th percentiles, and the percent differences of these from the medians of the number of persons 
with exposures above different daily maximum 8-hour exposure levels (ppm-8hr) – All children, 
moderate exertion 

Exposure 
level median 5th percentile 10th percentile 25th percentile 75th percentile 90th percentile 95th percentile 

0.06 7,873 7,727 (1.9%) 7,761 (1.4%) 7,815 (0.7%) 7,928 0.7% 7,977 1.3% 8,008 1.7%

0.07 4,277 4,169 (2.5%) 4,194 (1.9%) 4,234 (1.0%) 4,323 1.1% 4,361 2.0% 4,384 2.5%

0.08 1,332 1,272 (4.5%) 1,282 (3.8%) 1,306 (2.0%) 1,356 1.8% 1,378 3.5% 1,392 4.5%
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Figure 22.  The distribution of the predicted number of people with at least one 8-hour 
exposure above 0.08 ppm-8hr at moderate or greater exertion for 1,268 repeated 
simulations of the Atlanta 2002 base case with 60,000 profiles 
 

 
 

Table 20.  Variability of replicate APEX simulations of 60,000 persons:  Medians, 5th, 10th, 25th, 75th, 
90th, 95th percentiles, and the percent differences of these from the medians of the number of persons 
with exposures above different daily maximum 8-hour exposure levels (ppm-8hr) – All people, 
moderate exertion 

Exposure 
level median 5th percentile 10th percentile 25th percentile 75th percentile 90th percentile 95th percentile 

0.06 21,816 21,622 (0.9%) 21,664 (0.7%) 21,734 (0.4%) 21,892 0.3% 21,968 0.7% 22,004 0.9%

0.07 10,804 10,642 (1.5%) 10,679 (1.2%) 10,740 (0.6%) 10,865 0.6% 10,931 1.2% 10,960 1.4%

0.08 3,294 3,199 (2.9%) 3,218 (2.3%) 3,254 (1.2%) 3,331 1.1% 3,364 2.1% 3,383 2.7%
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Table 21.  Variability of replicate APEX simulations of 60,000 persons:  Medians, 5th, 10th, 25th, 75th, 
90th, 95th percentiles, and the percent differences of these from the medians of the number of persons 
with exposures above different daily maximum 8-hour exposure levels (ppm-8hr) – All children 

Exposure 
level median 5th percentile 10th percentile 25th percentile 75th percentile 90th percentile 95th percentile 

0.06 10,405 10,253 (1.5%) 10,281 (1.2%) 10,344 (0.6%) 10,470 0.6% 10,521 1.1% 10,558 1.5%

0.07 6,373 6,237 (2.1%) 6,266 (1.7%) 6,317 (0.9%) 6,419 0.7% 6,465 1.5% 6,499 2.0%

0.08 2,082 2,011 (3.4%) 2,025 (2.7%) 2,052 (1.4%) 2,114 1.5% 2,142 2.9% 2,157 3.6%

 
 

 
Table 22.  Variability of replicate APEX simulations of 60,000 persons:  Medians, 5th, 10th, 25th, 75th, 
90th, 95th percentiles, and the percent differences of these from the medians of the number of persons 
with exposures above different daily maximum 8-hour exposure levels (ppm-8hr) – All people 

Exposure 
level median 5th percentile 10th percentile 25th percentile 75th percentile 90th percentile 95th percentile 

0.06 44,107 43,912 (0.4%) 43,962 (0.3%) 44,030 (0.2%) 44,175 0.2% 44,242 0.3% 44,278 0.4%

0.07 25,819 25,613 (0.8%) 25,659 (0.6%) 25,736 (0.3%) 25,904 0.3% 25,974 0.6% 26,017 0.8%

0.08 9,463 9,322 (1.5%) 9,353 (1.2%) 9,403 (0.6%) 9,520 0.6% 9,570 1.1% 9,605 1.5%

 
 
 
Table 23.  Summary of convergence statistics for the number of people predicted by APEX 
who experience one or more 8-hour average exposures above exposure levels of 0.06, 0.07, 
and 0.08 ppm-8hr:  90 percent confidence intervals around the medians 
Exposure level 

(ppm-8hr) 
Children, 

moderate exertion
Children, 

any exertion 
All people, 

moderate exertion 
All people, 

any exertion 
0.06 ± 1.8% ± 1.5% ± 0.9% ± 0.4% 
0.07 ± 2.5% ± 2.1% ± 1.5% ± 0.8% 
0.08 ± 4.5% ± 3.5% ± 2.8% ± 1.5% 
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APEX MODEL FORMULATION UNCERTAINTY 
 
 Uncertainties are inherent in modeled representations of physical reality due to 
simplifying assumptions and other aspects of model formulation.  The methods for assessing 
input parameter uncertainty and model formulation or structure uncertainty are different.  It is 
difficult to incorporate the uncertainties due to the model formulation into a quantitative 
assessment of uncertainty in a straightforward manner.  The preferred way to assess model 
formulation uncertainty is by comparing model predictions with measured values, while having 
fairly complete knowledge of the uncertainty due to input parameters.  Whence the importance 
of model evaluation and the availability of data suitable to model evaluation.  In the absence of 
measurements that can be used to estimate model uncertainty, one must rely on informed 
judgment. 
 
 Our approach to assessing model formulation uncertainty is to partition this uncertainty 
into that of the components, or algorithms, of the model.  For each of the algorithms within the 
model, we will discuss the simplifying assumptions and those uncertainties associated with the 
algorithms which are distinct from the input data uncertainties.  Where possible, we will evaluate 
these algorithms by comparing their predictions with measured data.  Otherwise, we will 
formulate an informed judgment as to a range of plausible uncertainties for the algorithms.  We 
will assemble the different types of uncertainties to present an integrated assessment of model 
uncertainty. 

» It should be noted that improvements to the algorithms in APEX are largely data-limited, 
in the sense that more and better data are needed as the basis for further improvements.  Data 
collection efforts in the near future would best serve to reduce uncertainties by improving the 
inputs to the current algorithms and not to derive better algorithms.  Uncertainty would be 
reduced significantly just by the use of better inputs.  For example, APEX can model the 
dependence of AER distributions on hourly temperature, humidity, and wind speed, which are 
known to influence AERs, but data are not available to characterize these relationships.  APEX 
has the flexibility to take advantage of much more data than are currently available. 
 
 There are several algorithms in APEX that involve simplifying assumptions that have the 
potential to introduce uncertainty into the model, including the following: 
 
• demographic profiles model 
• longitudinal diary construction model 
• collapsing the numerous microenvironments in the diaries to 12 modeled microenvironments 
• modeling movements of individuals (commuting, school, shopping, etc.) 
• microenvironment concentration model – factors approach 
• microenvironment concentration model – mass balance approach 
• modeling near-roadway titration of ozone by NOx  
• model for assigning physiological characteristics to individuals 
• MET model 
• ventilation model 
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• dose model 
 

The Treatment of Variability and Covariability in Apex 
 

 Assessment of the extent to which APEX correctly models variability and covariability is 
central to an understanding of the model uncertainty, and so we summarize here the approach 
APEX takes to this. 

 
The APEX methodology essentially simulates individuals and then computes exposures 

to ozone concentrations for each of these simulated individuals.  The individuals are selected to 
represent a random sample from a defined population.  The collection of individuals represents 
the variability of the target population, and accounts for several types of variability, including 
demographic, physiological, and activities.  Typically more than 50,000 individuals are modeled 
in order to capture the full range of variability. 
 
 APEX incorporates stochastic processes representing the natural variability of personal 
profile characteristics, activity patterns, and microenvironment parameters.  In this way, APEX 
is able to represent much of the variability in the exposure estimates resulting from the 
variability of the factors effecting human exposure.  APEX is also designed to account for 
covariability, or linear and nonlinear correlation, among the model inputs. 
 

APEX models variability and covariability in two ways: 

• Stochastic.  The user provides APEX with probability distributions characterizing the 
variability of input parameters.  These are treated stochastically in the model and the 
computed distributions of exposures reflect this variability.  For example, the rate of 
decay of ozone in houses depends in a complex way on several factors which we are not 
able to explicitly model at this time.  However, we can specify a distribution of decay 
rates which reflects observed variations in ozone decay rates.  APEX randomly samples 
from this distribution to obtain values which are used in the mass balance model.  
Covariability is modeled through the use of conditional distributions.  If two or more 
parameters are related, conditional distributions which depend on the values of the 
related parameters are input to APEX.  For example, the distribution of air exchange rates 
(AERs) in a house depends on the outdoor temperature and whether or not air 
conditioning (A/C) is in use.  In this case, a set of AER distributions is provided to APEX 
for different ranges of temperatures and A/C use, and the selection of the distribution in 
APEX is driven by the temperature and A/C status at that time. 

• Explicit.  For some variables used in modeling exposure, APEX models variability and 
covariability explicitly and not stochastically.  For example, hourly-average ambient 
ozone concentrations and temperatures are used in model calculations.  These are input to 
the model for every hour in the time period modeled, and in this way the variability and 
covariability of concentrations and hourly temperatures are modeled explicitly. 

 
Each of these methods allows for linear and nonlinear relationships between variables to be 
modeled.  Table 24 lists the components of exposure variability which are modeled by APEX. 
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Table 24.  Components of exposure variability modeled by APEX 
Parameter Dimensions of 

Variation in APEX 
Treatment in APEX 

Population demographics (age, gender, race, 
employment, residence location, work 
location) 

Individuals, by 
Census tract 

Random samples from Census 
tracts 

Commuting Individuals, by 
Census tract 

Random samples from Census 
tracts 

Physiology (weight) Individuals Distributions by age and gender 
Physiology (resting metabolic rate, maximum 
level of sustained metabolic activity, oxygen 
uptake per unit of energy expended) 

Individuals See section 4.3 in the APEX 
TSD. 

Physiology (blood volume, lung diffusivity, 
endogenous CO production rate, amount of 
hemoglobin in the blood) 

Individuals See section 4.3 in the APEX 
TSD.  Not used for modeling 
ozone. 

Ambient pollutant concentrations Space and time 
(hourly) 

Hourly values at a set of 
locations are input; values from 
the closest location are used. 

Ambient meteorological data Space and time 
(hourly and daily) 

Hourly values at a set of 
locations are input; values from 
the closest location are used; 
daily values are calculated in 
APEX. 

Spatial concentration variability within 
microenvironments 

Microenvironment 
type and 
geographical region 

This variability can be 
incorporated into the variability 
of mass balance or factors 
model parameters. 

Spatial concentration variability within air 
quality districts 

Microenvironment 
type and 
geographical region 

This variability can be 
incorporated into the variability 
of mass balance or factors 
model parameters. 

Within-hour concentration variability Microenvironment 
type and 
geographical region 

This variability can be 
incorporated into the variability 
of mass balance or factors 
model parameters. 

Microenvironment Microenvironment 
type 

APEX can model any number 
of user-defined 
microenvironments 

 
 

There are also model inputs which are not tied to the individual which contribute to the 
variability of the modeling results.  These include spatially and temporally varying air quality 
concentrations and meteorological variables, as well as a number of factors involved in the 
calculation of indoor and in-vehicle microenvironmental concentrations.  The variability of air 
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quality and meteorological data is modeled by providing hourly average, spatially varying inputs 
to APEX.  Variability for these inputs for time scales less than one hour can be modeled with 
parameters of the microenvironment model.  The variability of other parameters is treated by 
specifying distributions for these parameters, from which APEX randomly samples values. 
 
 Correlations and non-linear relationships between variables input to the model can result 
in the model producing incorrect results if the inherent relationships between these variables are 
not preserved. 
 
 APEX has a sophisticated method for modeling linearly and non-linearly correlated input 
data.  This is accomplished by providing inputs that enable the correlation to be modeled 
explicitly within APEX.  For example, there are non-linear relationships between the outdoor 
temperature and rates of air exchange in homes (or automobiles).  One factor that contributes to 
this is that windows tend to be closed more often when temperatures are low or high than when 
temperatures are moderate.  This relationship is explicitly modeled in APEX by specifying 
different probability distributions of air exchange rates for different ambient temperatures. 
 
 Thus, the APEX formulation allows for relationships between input data to be modeled, 
provided that enough is known about these relationships to specify them.  The degree to which 
these relationships are unknown contributes to the uncertainty of the results.  For those 
relationships which APEX explicitly models the correlation, uncertainty arises from 
misspecification of the correlation in the model inputs. 
 
 Table 25 lists different types of covariability and how they are modeled in APEX.  The 
center column of this table indicates whether or not APEX explicitly models this type of 
covariability. 
 
Table 25.  Components of covariability modeled by APEX 
Type of Covariability APEX? Treatment in APEX / Comments 
Within-profile correlations 1 Yes Activities, physiology, 

microenvironments 
Between-profile correlations No Not important 
Correlations between profile variables and 
microenvironment parameters 

Yes Profiles are assigned 
microenvironment parameters 

Correlations between profile variables (age, 
gender) and activities 

Yes Age and gender are used in activity 
diary selection 

Correlations between activities and 
microenvironment parameters 

No E.g., opening windows when cooking 
or smoking.  Might be important, but 
do not have data. 

Correlations among microenvironment 
parameters in the same microenvironment 

Yes Modeled with joint conditional 
variables 
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Type of Covariability APEX? Treatment in APEX / Comments 
Correlations between demographic variables 
and air quality. 

Yes This is modeled with the spatially 
varying demographic variables and 
air quality input to APEX. 

Correlations between meteorological variables 
and activities 

Yes Temperature is used in activity diary 
selection 

Correlations between meteorological variables 
and microenvironment parameters 

Yes The distributions of 
microenvironment parameters can be 
functions of temperature 

The consistency of the occupation (and time 
spent commuting) for an individual from one 
working day to the next. 

No Simulated individuals who are 
employed are assigned activity 
diaries without regard to occupation. 
 This would be important for 
modeling outdoor workers. 

1 We use the term “correlation” to encompass linear and nonlinear relationships. 
 

Errors in Coding 
 
 APEX has undergone fairly extensive testing, but has not been subjected to a rigorous, 
exhaustive test regime.  Incorrect implementation of algorithms as documented falls into the 
realm of coding errors.  We will not attempt to quantify the uncertainties in the model 
predictions that might be the result of coding errors. 
 

Errors in Algorithms 
 
 The likelihood of errors in algorithms can be reduced by a scientific peer review of the 
documentation of the model algorithms.  We will not attempt to quantify a likely range of 
uncertainties due to possible errors in algorithms.  However, we present an example of such an 
error which resulted in increased uncertainty of our exposure modeling results. 
 
 In our review of the APEX modeling results, we have uncovered an error in the algorithm 
for estimating ventilation rates.  This algorithm (section 2.5.1, Exposure Analysis TSD) included 
terms for uncertainty as well as variability.  Since only variability should be reflected by the 
algorithm, this error erroneously inflates the variability, most noticeably for older adults.  This 
error primarily affects the highest percentiles of the distributions of ventilation rates.  For adults 
70 years of age and older, the 99.9th percentile of the ventilation rates distribution is a factor of 
two too high; for children, the difference is less than 1.5% at the 99.9th percentile.  Therefore, 
while the estimates of exertion levels are acceptable for children, they are too high for the 
general population.  This has been corrected and the modeling will be repeated for the final Staff 
Paper. 
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Ambient Air Quality Concentrations 
 
 Ambient concentrations are not explicitly modeled by APEX; they are provided as input 
data.  APEX is capable of using input data with highly resolved spatial and temporal resolution.  
Model uncertainty associated with ambient concentrations results from erroneous 
characterization of the levels and/or variability of concentrations in very localized areas, e.g., 
close to sources or sinks. 
 
 For ozone modeling, one important process that may not be adequately modeled is the 
effect on exposures of the decrease in ozone concentrations downwind of roadways due to 
titration by NOx emitted by cars and trucks.  APEX does simulate the decrease in ozone levels 
downwind of roadways, and the effect of this on exposures of people engaged in activities near 
roadways, but does not differentially model the affects on people in homes close to roadways 
(vs. homes not close to roadways). 
 
 As described above, we plan to quantify the potential impact of this uncertainty by 
performing an analysis separately modeling the population living near roadways (with 
concentration adjustments) and the remaining population, combining the results of these 
simulations, and comparing the predicted distribution of exposures to results of modeling 
without this special treatment. 
 

Meteorological Data 
 
 Meteorological variables are not explicitly modeled by APEX; they are provided as input 
data.  APEX is capable of using input data with highly resolved spatial and temporal resolution, 
and we do not consider model uncertainty associated with meteorological data to be an issue. 
 

Modeling Concentrations in Microenvironments 
 
 There are two models in APEX for calculating concentrations in microenvironments, the 
mass balance and the factors models (see the APEX TSD for details): 
 

decayexchangeairnpenetratioproximityambientin fxfxfxfxC
dt

tdCC ==Δ
)(

 (mass balance model) 

npenetratioproximityambienthourly fxfxCC =   (factors model) 
 
 One can raise questions as to the appropriateness of the assumptions of the mass balance 
model in APEX for estimating concentrations in microenvironments, such as linearity 
assumptions and assumptions that parameters (e.g., air exchange rates, source strengths, 
infiltration factors, and deposition rates) can be treated as constant in time over an hour.  
However, of much greater importance for model uncertainty is how the inputs to the mass 
balance model (air exchange rates, decay rates, etc.) are modeled, so our discussion will focus on 
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these.  The factors model formulation has no model uncertainty, by definition of that model’s 
parameters. 
 

Air Exchange Rate 
 
 APEX models the dependence of AERs on the microenvironment characteristics and 
temperature, but not the behavior of the occupants, which is known to influence AERs.  The 
analysis of the uncertainties of the AER distributions input to APEX encompasses this aspect of 
model uncertainty. 
 

Deposition Processes 
 
 The rate of deposition of ozone to some materials diminishes with cumulative exposure 
to ozone.  This is not necessarily a small effect.  In one study, 60 to 90 percent more ozone was 
scavenged by fiberglass insulation that had not been previously exposed to ozone, than by 
insulation with no previous exposure (Liu and Nazaroff, 2001; CD, Appendix AX3, page 179).  
This effect is not explicitly modeled by APEX.  We will explore the potential impact of this 
model uncertainty by a sensitivity analysis. 
 

Chemical Reaction Processes 
 
 Ozone reacts with a number of indoor pollutants, such as NOx from gas stoves and VOCs 
from consumer products.  Titration of ozone by NOx from gas stoves reduces the concentration 
of ozone indoors.  Lee et al. (1999) find ozone concentrations dropping by a factor of five within 
seven minutes of a gas stove being turned on.  The inputs to APEX will be modified to take this 
into account before the final exposure modeling is performed in support of the ozone NAAQS 
review, and the uncertainties of those inputs (essentially the prevalence of gas stoves and the 
frequency of their use) and the algorithm will be incorporated into this uncertainty analysis.  This 
modification will have the effect of slightly reducing some people’s exposures. 
 
 Ozone reacts slowly with most other indoor pollutants, and this is a minor removal 
process compared to air exchange and surface removal (Weschler, 2000).  Aside from the gas 
stove effect, the lack of a more refined treatment of indoor air chemistry is not considered to be a 
significant limitation of APEX for modeling ozone exposures. 
 

Characterization of Population Demographics 
 
 The population demographics are taken directly from the 2000 Census and not modeled 
by APEX.  Therefore there is no model uncertainty associated with this. 
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Modeling Activity Patterns 
 
 The following are population characteristics that contribute to the variability of exposures 
but which are not fully modeled in APEX.  Of course, some of these are more important than 
others.  Additional data collection will be required to assess whether or not these are limitations. 
 

• Occupational category 
• Life cycle (see, e.g., Zuzanek and Smale, 1992) 
• Socio-economic status and educational level 
• Longitudinal stability in occupation, exercise levels, and leisure activities 
• Geographical locations of activities away from the home 
• The specific microenvironments visited away from home 

 
 Even though some of these may influence exposures, they will not necessarily have much 
effect on the population distribution of exposures.  In this case, there would be no reason to 
model them explicitly, unless one wanted to break out results by that variable.  The uncertainty 
of the activity data input to APEX is likely larger than the uncertainty resulting from these 
limitations. 
 
 Behavior changes in response to ozone pollution or in response to air quality index (AQI) 
notification (“averting behavior”) is not being taken into account in our exposure modeling.  
Eiswerth et al. (2005) find that increased ozone levels appear to influence the amount of time 
that asthmatic adults spend in different activities.  In a national survey, Mansfield and Corey 
(2003) find a significant fraction of the people surveyed modifying their activities in response to 
ozone alerts.  We do not feel that this is a relatively influential uncertainty at this time, however, 
this aspect of people’s activities presumably will become more important in the future. 
 
 APEX uses a sophisticated model to sequentially (longitudinally) assign activity diaries 
to simulated individuals, which introduces a degree of realism into the ways that people tend to 
repeat certain activity patterns.  We have performed sensitivity analyses to assess the impact of 
this treatment (Exposure Analysis TSD), and are including its parameters in the Monte Carlo 
uncertainty analysis.  Additional data on longitudinal activity patterns are needed to evaluate this 
model. 
 

Modeling Physiological Processes 

Overview of the Physiological Model 
 
 The model in APEX of physiological processes that are relevant to inhalation exposure 
and dose is significantly improved over earlier (pre-2005) versions of APEX.  APEX currently 
has a physiological model for ventilation rates (the primary driver of dose of ozone) which 
accounts for prior energy expenditure patterns (also known as oxygen debt [fatigue] and excess 
post-exercise oxygen consumption [EPOC]). 
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 The physiological model produces two quantities which are used in this exposure 
assessment, an effective ventilation rate (EVR), which is used to characterize levels of exertion 
in compiling summary exposure tables, and a physical activity index (PAImed), used to 
characterize simulated individuals as “active.” 
 
 One of the key variables in this model is the “MET” (metabolic equivalent), defined as 
the ratio of the metabolic rate of energy consumption for an activity to the resting metabolic rate 
(RMR).  For each simulated individual, APEX generates an event time-series of MET values 
from activity-specific MET distributions (some METS distributions are occupation/age 
dependent as well).  Events are specified in the diaries, and last from 1 to 60 minutes.  This time 
series of MET values is then adjusted for fatigue and excess post-exercise oxygen consumption.  
Then the oxygen consumption rate, VO2, is calculated for each event as VO2 = METadj · RMR · 
ECF, where ECF is a person-specific energy conversion factor and RMR is the person-specific 
resting (basal) metabolic rate.  The expired ventilation rate Ve, is calculated by a stochastic 
function of VO2, body mass, age, and gender.  The effective ventilation rate EVR = Ve / BSA is 
averaged over 1- and 8-hours, and used to characterize levels of exertion.  Body surface area 
(BSA) is currently modeled as a simple deterministic function of body mass (BM), and there is 
some uncertainty in the regression equation parameters. 
 
 Thus, EVR is a complex function of the activity-specific METs and person-specific 
RMR, ECF, BSA, and BM, which vary with age and gender.  The person-specific parameters are 
modeled to reflect variability in the populations.  For example, different 36-year old males will 
have different physiological parameters reflective of the variation observed in 36-year old males. 
 
 Once the final MET time series is calculated, a daily average physical activity index 
(PAI) for the simulated individual is calculated as the time-weighted average of MET values for 
each day.  The median of the daily PAI values is calculated for each profile. This median daily 
PAI value (PAImed) is used in the characterization of persons as “active” when creating the 
output exposure summary tables. 
 

Uncertainty of the Physiological Model 
 
 As part of the next phase of this uncertainty analysis, we intend to review the recent 
literature to assess the appropriateness of the assumptions in this physiological model.  There has 
been significant progress in modeling these physiological processes since the algorithms in 
APEX were developed, with the exception of the treatment of EPOC, which is state-of-the art.  
We conducted a quick literature search on the internet, which turned up the publications listed in 
Appendix A, along with either abstracts or the complete publication.  Inspection of this list 
reveals a potential wealth of information for assessing the uncertainty of the physiological model 
in APEX, and then improving the model. 
 
 The physiological calculations do not directly affect APEX’s estimation of exposures; 
rather, they are used to characterize the population according to exertion levels and “active” or 
not.  These are important for exposure-based estimates of risk. 
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The Resting Metabolic Rate Model 
 

The RMRs for individuals are estimated by a regression equation with coefficients 
specific to age and gender, which were developed by Schofield (1985).  (See Johnson, 2003, 
Table 9-11.)  Since then, studies have improved on this model.  For example, Huang et al. (2004) 
find that the best predictive equation for RMR for obese adults include terms for age, gender, 
weight, height, and diabetes.  Comparison with more recent models will provide information 
about the uncertainty of the Schofield model in APEX. 
 
The Ventilation Rate Model 
 
 Ventilation rates are calculated in APEX, and are not input to the model.  We plan to 
evaluate the APEX algorithm for calculating ventilation rates by comparing them with values in 
the literature.  For example, Marty et al. (2002) develop parametric distributions of breathing 
rates for children and adults, which can be compared with the distributions predicted by APEX.  
 
Classification of Individuals as Active 
 
 This is an area where a great deal of research is being done for both adults and children.  
Duke et al (2003) summarize nationally representative information about levels and types of 
physical activity among children aged 9–13 years.  Puyau et al. (2002) show that adult-derived 
MET cutpoints are not applicable to children and can lead to erroneous conclusions regarding 
physical activity levels in children.  Appendix A lists some of the recent work in this field. 
 
 APEX uses the PAI cutpoint to classify individuals as active or not active.  There are two 
shortcomings of this method.  First, it is not clear what the relevant classification of specific 
activities is in terms of levels of physical exertion.  Second, given such a classification of 
activities, it is not clear how to best characterize a given individual as “active” or not. 
 
 There are various “definitions” or interpretations of how to classify levels of exertion in 
the literature.  The CDC and the American College of Sports Medicine categorize physical 
activity levels in adults as light: < 3 MET, moderate: 3 to 6 MET, and vigorous: >6 MET.  
Reland et al. (2004) use low activity: < 4,185 kJ/week (1,000 kcal/week) high: > 8,370 (2,000) 
moderate: in between, where 1 MET = 4.185 kJ kg-1 h-1.  Marty et al. (2002) categorize activity 
levels according to ventilation rates (l/min per kg body weight), with different classifications for 
ages > 12 and ≤ 12 years.  McCurdy and Graham (2004) present a survey of the exercise 
physiology literature of different measures used to define moderate and vigorous physical 
activity, and find many different ways that researchers are categorizing activity levels. 
 
 There is less research in the area of characterizing individuals (as opposed to activities) 
in terms of how active they are, particularly in the context of how it influences their health risk 
from exposure to ozone. 
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 Sapkota et al. in their 2005 study on adult participation in recommended levels of 
physical activity, use a definition of “regular physical activity” given by CDC1.  Moderate-
intensity activity is described to respondents as any activity "that causes small increases in 
breathing and heart rate," and vigorous-intensity activity is described as any activity "that causes 
large increases in breathing or heart rate."  Respondents are classified as active at the minimum 
recommended level if they report moderate-intensity activity at least 30 minutes per day, 5 or 
more days per week, or vigorous-intensity activity at least 20 minutes per day, 3 or more days 
per week.  The Behavioral Risk Factor Surveillance System (BRFSS) survey for 2003 reports 
46% of U.S. adults to be active by this definition (Sapkota et al., 2005). 
 
 APEX characterizes a person an active if their median daily average MET is greater than 
1.75.  One factor which contributes to the uncertainty of this model is the fact that the daily 
average MET is largely driven by the number of hours spent sleeping, which is not correlated 
with most definitions of active people.  A better characterization might be the daily maximum 
12-hour average MET, which would reflect levels of activity while not sleeping.  In order to 
characterize the uncertainty associated with the estimation of exposures to an “active” 
population, we will use the CDC definition of “regular physical activity” for the definition of an 
active person. 
 

Unknown Model Uncertainty 
 
 There are structural uncertainties of APEX of which we are currently unaware.  We will 
attempt to characterize their uncertainties as they come to light.  We are proceeding on two 
fronts to uncover additional uncertainties: peer review and diagnostic model evaluation. 
 
 Perhaps there is a correlation between the tendency of people to open windows and their 
tendency to engage in outdoor activities.  If so, people who spend more time outdoors would 
tend to have higher AERs at home and work, and ignoring this could bias the modeled 
distribution of exposures.  This is conjecture, but is an example of potential unknown model 
uncertainty. 
 

UNCERTAINTY ANALYSIS RESULTS 
 
 As described above, we are using a Monte Carlo approach to produce quantitative 
estimates of the uncertainty of the APEX model results, based on estimates of the uncertainties 
of the model inputs.  We are performing 1,000 simulations of the Boston 2002 base case, paired 
with 1,000 simulations of the 2002 Boston current standard scenario, incorporating the model 
input uncertainties described in this report.  Each pair of simulations uses the same uncertain 
inputs and differs only by the air quality concentrations input to the model, so that we can assess 
the uncertainty of estimates of reductions in exposures as well as the uncertainty of the estimates 
of exposures.  The results of these simulations will be available in August.  We plan to also 
perform this analysis for one additional city. 
                                                 
1 http://www.cdc.gov/nccdphp/dnpa/physical/terms/index.htm 
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